Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 61
Number of page(s) 34
DOI https://doi.org/10.1051/cocv/2025050
Published online 18 July 2025
  1. A. Föppl, Vorlesung über technische Mechanik, Vol. 5. Leipzig (1907). [Google Scholar]
  2. T. Von Karman, Festigkeitsprobleme im Maschinenbau, Vol. IV/4. Leipzig (1910). [Google Scholar]
  3. G. Friesecke, R.D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by Γ-convergence. Arch. Rational Mech. Anal. 180 (2006) 183-236. [Google Scholar]
  4. G. Friesecke, R.D. James and S. Möller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55 (2002) 1461-1506. [Google Scholar]
  5. M. Friedrich and M. KruZik, Derivation of Von Karman plate theory in the framework oF three-dimensional viscoelasticity. Arch. Rational Mech. Anal. 238 (2020) 489-540. [Google Scholar]
  6. S. Neukamm and I. Velcic, Derivation of a homogenized Von Karman plate theory from 3D nonlinear elasticity. Math. Models Methods Appl. Sci. 23 (2013) 2701-2748. [Google Scholar]
  7. I. Velcic, On the general homogenization of Von Karman plate equations from three-dimensional nonlinear elasticity. Anal. Appl. 15 (2016) 1-49. [Google Scholar]
  8. H. Abels, M.G. Mora and S. Muller, The time-dependent Von Karman plate equation as a limit of 3D nonlinear elasticity. Calc. Var. Part. Differ. Equ. 41 (2010) 241-259. [Google Scholar]
  9. H. Abels, M.G. Mora and S. Möller, Thin vibrating plates: long time existence and convergence to the Von Karman plate equations. GAMM-Mitteilungen 34 (2011) 97-101. [Google Scholar]
  10. G. Kirchhoff, Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Reine Angew. Math. (Crelles J.) 1850 (1850) 51-88. [Google Scholar]
  11. M. Lecumberry and S. Muller, Stability of Slender Bodies under Compression and Validity of the Von Karman Theory. Arch. Rational Mech. Anal. 193 (2009) 255-310. [Google Scholar]
  12. F. Maddalena, D. Percivale and F. Tomarelli, Variational problems for Foppl-Von Karman plates. SIAM J. Math. Anal. 50 (2018) 251-282. [Google Scholar]
  13. C. Maor and M.G. Mora, Reference configurations versus optimal rotations: a Derivation of linear elasticity from finite elasticity for all traction forces. J. Nonlinear Sci. 31 (2021). [Google Scholar]
  14. P. Hornung, Approximation of Flat W2,2 Isometric Immersions by Smooth Ones. Arch. Rational Mech. Anal. 199 (2011) 1015-1067. [Google Scholar]
  15. G. Cybenko, Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2 (1989) 303-314. [Google Scholar]
  16. S.M. Carroll and B.W. Dickinson, Construction of neural nets using the radon transform. International 1989 Joint Conference on Neural Networks, Vol.1 (1989) 607-611. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.