Open Access
| Issue |
ESAIM: COCV
Volume 31, 2025
|
|
|---|---|---|
| Article Number | 72 | |
| Number of page(s) | 25 | |
| DOI | https://doi.org/10.1051/cocv/2025058 | |
| Published online | 29 August 2025 | |
- J.M. Smith and G.R. Price, The logic of animal conflict. Nature 246 (1973) 15–18. [Google Scholar]
- P.D. Taylor and L.B. Jonker, Evolutionarily stable strategies and game dynamics. Math. Biosci. 40 (1978) 145–156. [CrossRef] [MathSciNet] [Google Scholar]
- B. During, P. Markowich, J.-F. Pietschmann and M.-T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465 (2009) 3687–3708. [MathSciNet] [Google Scholar]
- G. Toscani, Kinetic models of opinion formation. Commun. Math. Sci. 4 (2006) 481–496. [CrossRef] [MathSciNet] [Google Scholar]
- M. Dorigo and C. Blum, Ant colony optimization theory: a survey. Theoret. Comput. Sci. 344 (2005) 243–278. [CrossRef] [MathSciNet] [Google Scholar]
- J. Kennedy, Particle swarm optimization, in Encyclopedia of Machine Learning, edited by C. Sammut and G.I. Webb. Springer US, Boston, MA (2010) 760–766. [Google Scholar]
- J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor (1975). [Google Scholar]
- R. Carmona, Applications of mean field games in financial engineering and economic theory, in Mean Field Games. Agent Based Models to Nash Equilibria, edited by F. Delarue. AMS (2021) 165–218. [Google Scholar]
- J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998). [Google Scholar]
- P.A.P. Moran, The Statistical Process of Evolutionary Theory/ Clarendon Press, Oxford (1962). [Google Scholar]
- M.A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life. Belknap Press (2006). [Google Scholar]
- T. Börgers and R. Sarin, Learning through reinforcement and replicator dynamics. J. Econ. Theory 77 (1997) 1–14. [Google Scholar]
- F.A.C.C. Chalub, L. Monsaingeon, A.M. Ribeiro and M.O. Souza, Gradient flow formulations of discrete and continuous evolutionary models: a unifying perspective. Acta Appl. Math. 171 (2021) 24. [Google Scholar]
- F.A.C.C. Chalub and M.O. Souza, From discrete to continuous evolution models: a unifying approach to driftdiffusion and replicator dynamics. Theoret. Popul. Biol. 76 (2009) 268–277. [Google Scholar]
- F.A.C.C. Chalub and M.O. Souza, The frequency-dependent Wright-Fisher model: diffusive and non-diffusive approximations. J. Math. Biol. 68 (2014) 1089–1133. [Google Scholar]
- C. Hilbe, Local replicator dynamics: A simple link between deterministic and stochastic models of evolutionary game theory. Bull. Math. Biol. 73 (2011) 2068–2087. [Google Scholar]
- A. Traulsen, J.C. Claussen and C. Hauert, Coevolutionary dynamics: from finite to infinite populations. Phys. Rev. Lett. 95 (2005) 238701. [Google Scholar]
- A. Traulsen, J.C. Claussen and C. Hauert, Coevolutionary dynamics in large, but finite populations. Phys. Rev. E 74 (2006) 011901. [Google Scholar]
- J.-B. Casteras and L. Monsaingeon, Hidden dissipation and convexity for Kimura equations. SIAM J. Math. Anal. 55 (2023) 7361–7398. [Google Scholar]
- S. Almi, M. Morandotti and F. Solombrino, A multi-step Lagrangian scheme for spatially inhomogeneous evolutionary games. J. Evol. Equ. 21 (2021) 2691–2733. [CrossRef] [MathSciNet] [Google Scholar]
- L. Ambrosio, M. Fornasier, M. Morandotti and G. Savare, Spatially inhomogeneous evolutionary games. Commun. Pure Appl. Math. LXXIV (2021) 1353–1402. [Google Scholar]
- M. Morandotti and F. Solombrino, Mean-field analysis of multipopulation dynamics with label switching. SIAM J. Math. Anal. 52 (2020) 1427–1462. [CrossRef] [MathSciNet] [Google Scholar]
- L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics, 2nd edn. ETH Zürich, Birkhauser Verlag, Basel (2008). [Google Scholar]
- L. Ambrosio and D. Trevisan, Well-posedness of Lagrangian flows and continuity equations in metric measure spaces. Anal. PDE 7 (2014) 1179–1234. [Google Scholar]
- C. Villani, Optimal Transport: Old and New. Springer, Berlin (2008). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
