The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
A. Agrachev , B. Bonnard , M. Chyba , I. Kupka
ESAIM: COCV, 2 (1997) 377-448
Published online: 2002-08-15
This article has been cited by the following article(s):
72 articles
Flat sub-Lorentzian structures on Martinet distribution
Yu. L. Sachkov ESAIM: Control, Optimisation and Calculus of Variations 31 40 (2025) https://doi.org/10.1051/cocv/2025005
Sub-Lorentzian geometry on the Martinet distribution
Yu. L. Sachkov Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ 517 (1) 38 (2024) https://doi.org/10.31857/S2686954324030068
A look at endemic equilibria of compartmental epidemiological models and model control via vaccination and mitigation
Monique Chyba, Taylor Klotz, Yuriy Mileyko and Corey Shanbrom Mathematics of Control, Signals, and Systems 36 (2) 297 (2024) https://doi.org/10.1007/s00498-023-00365-2
Left-invariant optimal control problems on Lie groups that are integrable by elliptic functions
Yurii Leonidovich Sachkov Russian Mathematical Surveys 78 (1) 65 (2023) https://doi.org/10.4213/rm10063e
Front Asymptotics of a Flat Sub-Riemannian Structure on the Engel Distribution
I. A. Bogaevsky Proceedings of the Steklov Institute of Mathematics 321 (1) 54 (2023) https://doi.org/10.1134/S0081543823020049
Асимптотики фронта плоской субримановой структуры на распределении Энгеля
Ilya Aleksandrovich Bogaevsky Труды Математического института имени В. А. Стеклова 321 62 (2023) https://doi.org/10.4213/tm4328
Анормальные экстремали в субримановой задаче для общей модели робота с прицепом
Andrei Andreevich Ardentov and Elizaveta Markovna Artemova Математический сборник 214 (10) 3 (2023) https://doi.org/10.4213/sm9829
Левоинвариантные задачи оптимального управления на группах Ли, интегрируемые в эллиптических функциях
Yurii Leonidovich Sachkov Успехи математических наук 78 (1(469)) 67 (2023) https://doi.org/10.4213/rm10063
Abnormal extremals in the sub-Riemannian problem for a general model of a robot with a trailer
Andrei Andreevich Ardentov and Elizaveta Markovna Artemova Sbornik: Mathematics 214 (10) 1351 (2023) https://doi.org/10.4213/sm9829e
Introduction to Geometric Control
Yuri Sachkov Springer Optimization and Its Applications, Introduction to Geometric Control 192 47 (2022) https://doi.org/10.1007/978-3-031-02070-4_3
Introduction to Geometric Control
Yuri Sachkov Springer Optimization and Its Applications, Introduction to Geometric Control 192 81 (2022) https://doi.org/10.1007/978-3-031-02070-4_4
Асимптотики сферы и фронта плоской субримановой структуры на распределении Мартине
Ilya Aleksandrovich Bogaevsky Математический сборник 213 (5) 50 (2022) https://doi.org/10.4213/sm9560
Asymptotic behaviour of the sphere and front of a flat sub-Riemannian structure on the Martinet distribution
Ilya Aleksandrovich Bogaevsky Sbornik: Mathematics 213 (5) 624 (2022) https://doi.org/10.1070/SM9560
Левоинвариантные задачи оптимального управления на группах Ли: классификации и задачи, интегрируемые в элементарных функциях
Yurii Leonidovich Sachkov Успехи математических наук 77 (1(463)) 109 (2022) https://doi.org/10.4213/rm10019
Bicycle paths, elasticae and sub-Riemannian geometry
Andrei Ardentov, Gil Bor, Enrico Le Donne, Richard Montgomery and Yuri Sachkov Nonlinearity 34 (7) 4661 (2021) https://doi.org/10.1088/1361-6544/abf5bf
Encyclopedia of Systems and Control
Bernard Bonnard and Monique Chyba Encyclopedia of Systems and Control 2069 (2021) https://doi.org/10.1007/978-3-030-44184-5_49
Sub-Riemannian interpolation inequalities
Davide Barilari and Luca Rizzi Inventiones mathematicae 215 (3) 977 (2019) https://doi.org/10.1007/s00222-018-0840-y
Universal differentiability sets and maximal directional derivatives in Carnot groups
Enrico Le Donne, Andrea Pinamonti and Gareth Speight Journal de Mathématiques Pures et Appliquées 121 83 (2019) https://doi.org/10.1016/j.matpur.2017.11.006
A Comprehensive Introduction to Sub-Riemannian Geometry
Andrei Agrachev, Davide Barilari and Ugo Boscain A Comprehensive Introduction to Sub-Riemannian Geometry (2019) https://doi.org/10.1017/9781108677325
Local (Sub)-Finslerian Geometry for the Maximum Norms in Dimension 2
Entisar Abdul-Latif Ali and Grégoire Charlot Journal of Dynamical and Control Systems 25 (3) 457 (2019) https://doi.org/10.1007/s10883-019-09435-8
Two-side bound of a root of an equation containing complete elliptic integrals
Антон Юрьевич Попов and Юрий Леонидович Сачков Program Systems: Theory and Applications 9 (4) 253 (2018) https://doi.org/10.25209/2079-3316-2018-9-4-253-264
A rough calculus approach to level sets in the Heisenberg group
Valentino Magnani, Eugene Stepanov and Dario Trevisan Journal of the London Mathematical Society 97 (3) 495 (2018) https://doi.org/10.1112/jlms.12115
Sub-Riemannian geometry, Hamiltonian dynamics, micro-swimmers, copepod nauplii and copepod robot
Bernard Bonnard, Monique Chyba, Jéremy Rouot and Daisuke Takagi Pacific Journal of Mathematics for Industry 10 (1) (2018) https://doi.org/10.1186/s40736-018-0036-9
Sub-Finsler Structures from the Time-Optimal Control Viewpoint for some Nilpotent Distributions
Davide Barilari, Ugo Boscain, Enrico Le Donne and Mario Sigalotti Journal of Dynamical and Control Systems 23 (3) 547 (2017) https://doi.org/10.1007/s10883-016-9341-8
On the subRiemannian cut locus in a model of free two-step Carnot group
Annamaria Montanari and Daniele Morbidelli Calculus of Variations and Partial Differential Equations 56 (2) (2017) https://doi.org/10.1007/s00526-017-1149-1
On the lack of semiconcavity of the subRiemannian distance in a class of Carnot groups
Annamaria Montanari and Daniele Morbidelli Journal of Mathematical Analysis and Applications 444 (2) 1652 (2016) https://doi.org/10.1016/j.jmaa.2016.07.032
Tangent Hyperplanes to Subriemannian Balls
A. A. Agrachev Journal of Dynamical and Control Systems 22 (4) 683 (2016) https://doi.org/10.1007/s10883-015-9296-1
Некоторые вопросы субримановой геометрии
Andrei Alexandrovich Agrachev Успехи математических наук 71 (6(432)) 3 (2016) https://doi.org/10.4213/rm9744
Local properties of almost-Riemannian structures in dimension 3
Ugo Boscain, Gregoire Charlot, Moussa Gaye and Paolo Mason Discrete & Continuous Dynamical Systems - A 35 (9) 4115 (2015) https://doi.org/10.3934/dcds.2015.35.4115
Cut time in sub-riemannian problem on engel group
A.A. Ardentov and Yu.L. Sachkov ESAIM: Control, Optimisation and Calculus of Variations 21 (4) 958 (2015) https://doi.org/10.1051/cocv/2015027
Encyclopedia of Systems and Control
Bernard Bonnard and Monique Chyba Encyclopedia of Systems and Control 1 (2014) https://doi.org/10.1007/978-1-4471-5102-9_49-1
Sub-Riemannian Geometry of Stiefel Manifolds
Christian Autenried and Irina Markina SIAM Journal on Control and Optimization 52 (2) 939 (2014) https://doi.org/10.1137/130922537
Metrics with equatorial singularities on the sphere
B. Bonnard and J.-B. Caillau Annali di Matematica Pura ed Applicata (1923 -) 193 (5) 1353 (2014) https://doi.org/10.1007/s10231-013-0333-y
Geometric Control Theory and Sub-Riemannian Geometry
Andrei A. Agrachev Springer INdAM Series, Geometric Control Theory and Sub-Riemannian Geometry 5 1 (2014) https://doi.org/10.1007/978-3-319-02132-4_1
Subriemannian geodesics of Carnot groups of step 3
Kanghai Tan and Xiaoping Yang ESAIM: Control, Optimisation and Calculus of Variations 19 (1) 274 (2013) https://doi.org/10.1051/cocv/2012006
Asymptotics of Maxwell Time in the Plate-Ball Problem
A. P. Mashtakov and A. Yu. Popov Journal of Mathematical Sciences 195 (3) 336 (2013) https://doi.org/10.1007/s10958-013-1583-3
Normal forms and invariants for 2-dimensional almost-Riemannian structures
U. Boscain, G. Charlot and R. Ghezzi Differential Geometry and its Applications 31 (1) 41 (2013) https://doi.org/10.1016/j.difgeo.2012.10.001
Hamiltonian dynamics and constrained variational calculus: continuous and discrete settings
Manuel de León, Fernando Jiménez and David Martín de Diego Journal of Physics A: Mathematical and Theoretical 45 (20) 205204 (2012) https://doi.org/10.1088/1751-8113/45/20/205204
On 2-Step, Corank 2, Nilpotent Sub-Riemannian Metrics
Davide Barilari, Ugo Boscain and Jean-Paul Gauthier SIAM Journal on Control and Optimization 50 (1) 559 (2012) https://doi.org/10.1137/110835700
On almost-Riemannian surfaces
Roberta Ghezzi Séminaire de théorie spectrale et géométrie 29 15 (2011) https://doi.org/10.5802/tsg.284
Экстремальные траектории и асимптотика времени Максвелла в задаче об оптимальном качении сферы по плоскости
Aleksei Pavlovich Mashtakov, Алексей Павлович Маштаков, Юрий Леонидович Сачков and Yurii Leonidovich Sachkov Математический сборник 202 (9) 97 (2011) https://doi.org/10.4213/sm7762
Non-Connectivity example in subRiemannian geometry
O. Calin and D.C. Chang Complex Variables and Elliptic Equations 56 (1-4) 35 (2011) https://doi.org/10.1080/17476930903394754
Экстремальные траектории в нильпотентной субримановой задаче на группе Энгеля
Andrei Andreevich Ardentov, Андрей Андреевич Ардентов, Юрий Леонидович Сачков and Yurii Leonidovich Sachkov Математический сборник 202 (11) 31 (2011) https://doi.org/10.4213/sm7774
Extremal trajectories and the asymptotics of the Maxwell time in the problem of the optimal rolling of a sphere on a plane
Aleksei P Mashtakov and Yurii L Sachkov Sbornik: Mathematics 202 (9) 1347 (2011) https://doi.org/10.1070/SM2011v202n09ABEH004190
Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group
Andrei A Ardentov and Yurii L Sachkov Sbornik: Mathematics 202 (11) 1593 (2011) https://doi.org/10.1070/SM2011v202n11ABEH004200
Normal forms and reachable sets for analytic martinet sub-Lorentzian structures of hamiltonian type
M. Grochowski Journal of Dynamical and Control Systems 17 (1) 49 (2011) https://doi.org/10.1007/s10883-011-9110-7
A Study of the Asymptotic Holonomic Efficiency Problem
Jianghai Hu and Slobodan Simic SIAM Journal on Control and Optimization 48 (2) 1112 (2009) https://doi.org/10.1137/040613895
The role of symplectic integrators in optimal control
Monique Chyba, Ernst Hairer and Gilles Vilmart Optimal Control Applications and Methods 30 (4) 367 (2009) https://doi.org/10.1002/oca.855
Regions Where the Exponential Map at Regular Points of Sub-Riemannian Manifolds is a Local Diffeomorphism
Marcos M. Diniz and José M. M. Veloso Journal of Dynamical and Control Systems 15 (1) 133 (2009) https://doi.org/10.1007/s10883-008-9054-8
Maxwell strata in the Euler elastic problem
Yu. L. Sachkov Journal of Dynamical and Control Systems 14 (2) 169 (2008) https://doi.org/10.1007/s10883-008-9039-7
Optimality of Euler’s elasticae
Yu. L. Sachkov Doklady Mathematics 76 (3) 817 (2007) https://doi.org/10.1134/S106456240706004X
Множество Максвелла в обобщенной задаче Дидоны
Yurii Leonidovich Sachkov and Юрий Леонидович Сачков Математический сборник 197 (4) 123 (2006) https://doi.org/10.4213/sm1548
Global subanalytic solutions of Hamilton–Jacobi type equations
Emmanuel Trélat Annales de l'Institut Henri Poincaré C, Analyse non linéaire 23 (3) 363 (2006) https://doi.org/10.1016/j.anihpc.2005.05.002
Y. Chitour, F. Jean and E. Trelat 940 (2005) https://doi.org/10.1109/CDC.2005.1582278
Singular Trajectories and Their Role in Control Theory
IEEE Transactions on Automatic Control 50 (2) 278 (2005) https://doi.org/10.1109/TAC.2004.841883
Arnold's Problems
Arnold's Problems 181 (2005) https://doi.org/10.1007/3-540-26866-9_2
Geometric analysis on a family of pseudoconvex hypersurfaces
Ovidiu Calin and Der-Chen Chang Complex Variables, Theory and Application: An International Journal 50 (7-11) 803 (2005) https://doi.org/10.1080/02781070500130715
The geometry on a step 3 Grushin model
Ovidiu Calin and Der-Chen Chang Applicable Analysis 84 (2) 111 (2005) https://doi.org/10.1080/000556810410001724382
Morse-Sard type results in sub-Riemannian geometry
L. Rifford and E. Tr�lat Mathematische Annalen 332 (1) 145 (2005) https://doi.org/10.1007/s00208-004-0622-2
Resonance of minimizers forn-level quantum systems with an arbitrary cost
Ugo Boscain and Grégoire Charlot ESAIM: Control, Optimisation and Calculus of Variations 10 (4) 593 (2004) https://doi.org/10.1051/cocv:2004022
On SubRiemannian Geodesics
Peter Greiner and Ovidiu Calin Analysis and Applications 01 (03) 289 (2003) https://doi.org/10.1142/S021953050300017X
Conjugate Times for Smooth Singular Trajectories and Bang-Bang Extremals
Bernard Bonnard, Ludovic Faubourg and Emmanuel Trélat IFAC Proceedings Volumes 36 (2) 117 (2003) https://doi.org/10.1016/S1474-6670(17)38877-8
Measures of transverse paths in sub-Riemannian geometry
Elisha Falbel and Frédéric Jean Journal d'Analyse Mathématique 91 (1) 231 (2003) https://doi.org/10.1007/BF02788789
On the Noether Theorem for Optimal Control
D.F.M. Torres European Journal of Control 8 (1) 56 (2002) https://doi.org/10.3166/ejc.8.56-63
On the subanalyticity of Carnot–Caratheodory distances
Andrei Agrachev and Jean-Paul Gauthier Annales de l'Institut Henri Poincare (C) Non Linear Analysis 18 (3) 359 (2001) https://doi.org/10.1016/S0294-1449(00)00064-0
Nonlinear control in the Year 2000
Andrei Agrachev and Jean-Paul Gauthier Lecture Notes in Control and Information Sciences, Nonlinear control in the Year 2000 258 1 (2000) https://doi.org/10.1007/BFb0110203
Nonlinear control in the Year 2000
Sébastien Jacquet Lecture Notes in Control and Information Sciences, Nonlinear control in the Year 2000 258 521 (2000) https://doi.org/10.1007/BFb0110238
M. Chyba 1 7 (1999) https://doi.org/10.1109/CDC.1999.832738
On the Dido Problem and Plane Isoperimetric Problems
Andrei A. Agrachev and Jean-Paul A. Gauthier Acta Applicandae Mathematica 57 (3) 287 (1999) https://doi.org/10.1023/A:1006237201915
Sub-Riemannian Metrics: Minimality of Abnormal Geodesics versus Subanalyticity
Andrei A. Agrachev and Andrei V. Sarychev ESAIM: Control, Optimisation and Calculus of Variations 4 377 (1999) https://doi.org/10.1051/cocv:1999114
Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie sous-riemannienne dans le cas Martinet
Bernard Bonnard and Monique Chyba ESAIM: Control, Optimisation and Calculus of Variations 4 245 (1999) https://doi.org/10.1051/cocv:1999111
Le front d'onde en géométrie sous-riemannienne : le cas Martinet
Monique Chyba Séminaire de théorie spectrale et géométrie 16 81 (1998) https://doi.org/10.5802/tsg.197