Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A Darcy law with memory by homogenisation for evolving microstructure

David Wiedemann and Malte A. Peter
Journal of Mathematical Analysis and Applications 129222 (2025)
https://doi.org/10.1016/j.jmaa.2025.129222

Low Mach number limit on perforated domains for the evolutionary Navier–Stokes–Fourier system

Danica Basarić and Nilasis Chaudhuri
Nonlinearity 37 (6) 065008 (2024)
https://doi.org/10.1088/1361-6544/ad3da9

Two-phase flows through porous media described by a Cahn–Hilliard–Brinkman model with dynamic boundary conditions

Pierluigi Colli, Patrik Knopf, Giulio Schimperna and Andrea Signori
Journal of Evolution Equations 24 (4) (2024)
https://doi.org/10.1007/s00028-024-00999-y

Ad hoc test functions for homogenization of compressible viscous fluid with application to the obstacle problem in dimension two

Marco Bravin
Journal of Evolution Equations 24 (4) (2024)
https://doi.org/10.1007/s00028-024-01014-0

Homogenization of the steady-state Navier-Stokes equations with prescribed flux rate or pressure drop in a perforated pipe

Gianmarco Sperone
Journal of Differential Equations 375 653 (2023)
https://doi.org/10.1016/j.jde.2023.08.033

Inverse of Divergence and Homogenization of Compressible Navier–Stokes Equations in Randomly Perforated Domains

Peter Bella and Florian Oschmann
Archive for Rational Mechanics and Analysis 247 (2) (2023)
https://doi.org/10.1007/s00205-023-01847-y

Homogenization of the two-dimensional evolutionary compressible Navier–Stokes equations

Šárka Nečasová and Florian Oschmann
Calculus of Variations and Partial Differential Equations 62 (6) (2023)
https://doi.org/10.1007/s00526-023-02526-2

Homogenization of Evolutionary Incompressible Navier–Stokes System in Perforated Domains

Yong Lu and Peikang Yang
Journal of Mathematical Fluid Mechanics 25 (1) (2023)
https://doi.org/10.1007/s00021-022-00745-9

Homogenization of the unsteady compressible Navier-Stokes equations for adiabatic exponent γ > 3

Florian Oschmann and Milan Pokorný
Journal of Differential Equations 377 271 (2023)
https://doi.org/10.1016/j.jde.2023.08.040

Homogenization problems for the compressible Navier–Stokes system in 2D perforated domains

Šárka Nečasová and Jiaojiao Pan
Mathematical Methods in the Applied Sciences 45 (12) 7859 (2022)
https://doi.org/10.1002/mma.8283

A homogenized limit for the 2-dimensional Euler equations in a perforated domain

Matthieu Hillairet, Christophe Lacave and Di Wu
Analysis & PDE 15 (5) 1131 (2022)
https://doi.org/10.2140/apde.2022.15.1131

High Order Homogenized Stokes Models Capture all Three Regimes

Florian Feppon and Wenjia Jing
SIAM Journal on Mathematical Analysis 54 (4) 5013 (2022)
https://doi.org/10.1137/21M1390232

Homogenization of the Full Compressible Navier-Stokes-Fourier System in Randomly Perforated Domains

Florian Oschmann
Journal of Mathematical Fluid Mechanics 24 (2) (2022)
https://doi.org/10.1007/s00021-022-00679-2

Homogenization of stationary Navier–Stokes–Fourier system in domains with tiny holes

Yong Lu and Milan Pokorný
Journal of Differential Equations 278 463 (2021)
https://doi.org/10.1016/j.jde.2020.10.032

Darcy’s law as low Mach and homogenization limit of a compressible fluid in perforated domains

Richard M. Höfer, Karina Kowalczyk and Sebastian Schwarzacher
Mathematical Models and Methods in Applied Sciences 31 (09) 1787 (2021)
https://doi.org/10.1142/S0218202521500391

Homogenization of the evolutionary compressible Navier–Stokes–Fourier system in domains with tiny holes

Milan Pokorný and Emil Skříšovský
Journal of Elliptic and Parabolic Equations 7 (2) 361 (2021)
https://doi.org/10.1007/s41808-021-00124-x

Homogenization of Nonlocal Navier--Stokes--Korteweg Equations for Compressible Liquid-Vapor Flow in Porous Media

Christian Rohde and Lars von Wolff
SIAM Journal on Mathematical Analysis 52 (6) 6155 (2020)
https://doi.org/10.1137/19M1242434

A Unified Homogenization Approach for the Dirichlet Problem in Perforated Domains

Wenjia Jing
SIAM Journal on Mathematical Analysis 52 (2) 1192 (2020)
https://doi.org/10.1137/19M1255525

Homogenization of the compressible Navier–Stokes equations in domains with very tiny holes

Yong Lu and Sebastian Schwarzacher
Journal of Differential Equations 265 (4) 1371 (2018)
https://doi.org/10.1016/j.jde.2018.04.007

Homogenization of the Stokes equation with mixed boundary condition in a porous medium

John Fabricius, Elena Miroshnikova, Peter Wall and Xiao-Jun Yang
Cogent Mathematics 4 (1) 1327502 (2017)
https://doi.org/10.1080/23311835.2017.1327502

The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier–Stokes system

Lars Diening, Eduard Feireisl and Yong Lu
ESAIM: Control, Optimisation and Calculus of Variations 23 (3) 851 (2017)
https://doi.org/10.1051/cocv/2016016

From Particle Systems to Partial Differential Equations

Eduard Feireisl, Jiří Mikyška, Hana Petzeltová and Peter Takáč
Springer Proceedings in Mathematics & Statistics, From Particle Systems to Partial Differential Equations 209 139 (2017)
https://doi.org/10.1007/978-3-319-66839-0_7

Boundary conditions for the Stokes fluid in a bounded domain with a thin layer

Zhengan Yao and Hongxing Zhao
Kinetic and Related Models 9 (4) 797 (2016)
https://doi.org/10.3934/krm.2016017

Asymptotic behavior of the incompressible Navier-Stokes fluid with degree of freedom in porous medium

Hongxing Zhao and Zhengan Yao
Chinese Annals of Mathematics, Series B 37 (6) 853 (2016)
https://doi.org/10.1007/s11401-016-0148-4

Impermeability Through a Perforated Domain for the Incompressible two dimensional Euler Equations

Christophe Lacave and Nader Masmoudi
Archive for Rational Mechanics and Analysis 221 (3) 1117 (2016)
https://doi.org/10.1007/s00205-016-0980-4

Homogenization of Stationary Navier–Stokes Equations in Domains with Tiny Holes

Eduard Feireisl and Yong Lu
Journal of Mathematical Fluid Mechanics 17 (2) 381 (2015)
https://doi.org/10.1007/s00021-015-0200-2

Asymptotic Analysis of Acoustic Waves in a Porous Medium: Microincompressible Flow

Jose Diaz-Alban and Nader Masmoudi
Communications in Partial Differential Equations 39 (11) 2125 (2014)
https://doi.org/10.1080/03605302.2014.926371

STABILITY WITH RESPECT TO DOMAIN OF THE LOW MACH NUMBER LIMIT OF COMPRESSIBLE VISCOUS FLUIDS

EDUARD FEIREISL, TRYGVE KARPER, ONDŘEJ KREML and JAN STEBEL
Mathematical Models and Methods in Applied Sciences 23 (13) 2465 (2013)
https://doi.org/10.1142/S0218202513500371

Homogenization of the time discretized compressible Navier–Stokes system

Hongxing Zhao and Zheng-an Yao
Nonlinear Analysis: Theory, Methods & Applications 75 (4) 2486 (2012)
https://doi.org/10.1016/j.na.2011.10.040

Homogenization and singular limits for the complete Navier–Stokes–Fourier system

Eduard Feireisl, Antonín Novotný and Takéo Takahashi
Journal de Mathématiques Pures et Appliquées 94 (1) 33 (2010)
https://doi.org/10.1016/j.matpur.2009.11.006

ASYMPTOTIC ANALYSIS OF AN ISOTHERMAL GAS FLOW THROUGH A LONG OR THIN PIPE

EDUARD MARUŠIĆ-PALOKA and MAJA STARČEVIĆ
Mathematical Models and Methods in Applied Sciences 19 (04) 631 (2009)
https://doi.org/10.1142/S0218202509003553

Homogenization of a non-stationary Stokes flow in porous medium including a layer

Hongxing Zhao and Zheng-an Yao
Journal of Mathematical Analysis and Applications 342 (1) 108 (2008)
https://doi.org/10.1016/j.jmaa.2007.11.040

Topology optimization of fluid domains: kinetic theory approach

A. Evgrafov, G. Pingen and K. Maute
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 88 (2) 129 (2008)
https://doi.org/10.1002/zamm.200700122

On the justification of the Reynolds equation, describing isentropic compressible flows through a tiny pore

Andro Mikelić
ANNALI DELL'UNIVERSITA' DI FERRARA 53 (1) 95 (2007)
https://doi.org/10.1007/s11565-007-0007-z