The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Nader Masmoudi
ESAIM: COCV, 8 (2002) 885-906
Published online: 2002-08-15
This article has been cited by the following article(s):
45 articles
A Darcy law with memory by homogenisation for evolving microstructure
David Wiedemann and Malte A. Peter Journal of Mathematical Analysis and Applications 129222 (2025) https://doi.org/10.1016/j.jmaa.2025.129222
Low Mach number limit on perforated domains for the evolutionary Navier–Stokes–Fourier system
Danica Basarić and Nilasis Chaudhuri Nonlinearity 37 (6) 065008 (2024) https://doi.org/10.1088/1361-6544/ad3da9
Effect models for the stationary Navier–Stokes fluid in a porous medium with different scales
Hongxing Zhao Nonlinear Analysis: Real World Applications 76 104027 (2024) https://doi.org/10.1016/j.nonrwa.2023.104027
Two-phase flows through porous media described by a Cahn–Hilliard–Brinkman model with dynamic boundary conditions
Pierluigi Colli, Patrik Knopf, Giulio Schimperna and Andrea Signori Journal of Evolution Equations 24 (4) (2024) https://doi.org/10.1007/s00028-024-00999-y
Ad hoc test functions for homogenization of compressible viscous fluid with application to the obstacle problem in dimension two
Marco Bravin Journal of Evolution Equations 24 (4) (2024) https://doi.org/10.1007/s00028-024-01014-0
Homogenization of some evolutionary non-Newtonian flows in porous media
Yong Lu and Zhengmao Qian Journal of Differential Equations 411 619 (2024) https://doi.org/10.1016/j.jde.2024.08.021
Homogenization of the steady-state Navier-Stokes equations with prescribed flux rate or pressure drop in a perforated pipe
Gianmarco Sperone Journal of Differential Equations 375 653 (2023) https://doi.org/10.1016/j.jde.2023.08.033
On the vanishing rigid body problem in a viscous compressible fluid
Marco Bravin and Šárka Nečasová Journal of Differential Equations 345 45 (2023) https://doi.org/10.1016/j.jde.2022.11.023
Inverse of Divergence and Homogenization of Compressible Navier–Stokes Equations in Randomly Perforated Domains
Peter Bella and Florian Oschmann Archive for Rational Mechanics and Analysis 247 (2) (2023) https://doi.org/10.1007/s00205-023-01847-y
Homogenization of the two-dimensional evolutionary compressible Navier–Stokes equations
Šárka Nečasová and Florian Oschmann Calculus of Variations and Partial Differential Equations 62 (6) (2023) https://doi.org/10.1007/s00526-023-02526-2
Homogenization of Evolutionary Incompressible Navier–Stokes System in Perforated Domains
Yong Lu and Peikang Yang Journal of Mathematical Fluid Mechanics 25 (1) (2023) https://doi.org/10.1007/s00021-022-00745-9
Homogenization of the Navier–Stokes equations in perforated domains in the inviscid limit
Richard M Höfer Nonlinearity 36 (11) 6020 (2023) https://doi.org/10.1088/1361-6544/acfe56
Homogenization of the unsteady compressible Navier-Stokes equations for adiabatic exponent γ > 3
Florian Oschmann and Milan Pokorný Journal of Differential Equations 377 271 (2023) https://doi.org/10.1016/j.jde.2023.08.040
Homogenization problems for the compressible Navier–Stokes system in 2D perforated domains
Šárka Nečasová and Jiaojiao Pan Mathematical Methods in the Applied Sciences 45 (12) 7859 (2022) https://doi.org/10.1002/mma.8283
A homogenized limit for the 2-dimensional Euler equations in a perforated domain
Matthieu Hillairet, Christophe Lacave and Di Wu Analysis & PDE 15 (5) 1131 (2022) https://doi.org/10.2140/apde.2022.15.1131
High Order Homogenized Stokes Models Capture all Three Regimes
Florian Feppon and Wenjia Jing SIAM Journal on Mathematical Analysis 54 (4) 5013 (2022) https://doi.org/10.1137/21M1390232
Homogenization of the Full Compressible Navier-Stokes-Fourier System in Randomly Perforated Domains
Florian Oschmann Journal of Mathematical Fluid Mechanics 24 (2) (2022) https://doi.org/10.1007/s00021-022-00679-2
Homogenization of stationary Navier–Stokes–Fourier system in domains with tiny holes
Yong Lu and Milan Pokorný Journal of Differential Equations 278 463 (2021) https://doi.org/10.1016/j.jde.2020.10.032
Darcy’s law as low Mach and homogenization limit of a compressible fluid in perforated domains
Richard M. Höfer, Karina Kowalczyk and Sebastian Schwarzacher Mathematical Models and Methods in Applied Sciences 31 (09) 1787 (2021) https://doi.org/10.1142/S0218202521500391
Homogenization of the evolutionary compressible Navier–Stokes–Fourier system in domains with tiny holes
Milan Pokorný and Emil Skříšovský Journal of Elliptic and Parabolic Equations 7 (2) 361 (2021) https://doi.org/10.1007/s41808-021-00124-x
Derivation of Darcy’s law in randomly perforated domains
A. Giunti Calculus of Variations and Partial Differential Equations 60 (5) (2021) https://doi.org/10.1007/s00526-021-02040-3
Homogenization of Stokes Equations in Perforated Domains: A Unified Approach
Yong Lu Journal of Mathematical Fluid Mechanics 22 (3) (2020) https://doi.org/10.1007/s00021-020-00506-6
Homogenization of Nonlocal Navier--Stokes--Korteweg Equations for Compressible Liquid-Vapor Flow in Porous Media
Christian Rohde and Lars von Wolff SIAM Journal on Mathematical Analysis 52 (6) 6155 (2020) https://doi.org/10.1137/19M1242434
A Unified Homogenization Approach for the Dirichlet Problem in Perforated Domains
Wenjia Jing SIAM Journal on Mathematical Analysis 52 (2) 1192 (2020) https://doi.org/10.1137/19M1255525
Fundamental equations for primary fluid recovery from porous media
Yan Jin and Kang Ping Chen Journal of Fluid Mechanics 860 300 (2019) https://doi.org/10.1017/jfm.2018.874
Homogenization of the compressible Navier–Stokes equations in domains with very tiny holes
Yong Lu and Sebastian Schwarzacher Journal of Differential Equations 265 (4) 1371 (2018) https://doi.org/10.1016/j.jde.2018.04.007
Homogenization of the Stokes equation with mixed boundary condition in a porous medium
John Fabricius, Elena Miroshnikova, Peter Wall and Xiao-Jun Yang Cogent Mathematics 4 (1) 1327502 (2017) https://doi.org/10.1080/23311835.2017.1327502
The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier–Stokes system
Lars Diening, Eduard Feireisl and Yong Lu ESAIM: Control, Optimisation and Calculus of Variations 23 (3) 851 (2017) https://doi.org/10.1051/cocv/2016016
From Particle Systems to Partial Differential Equations
Eduard Feireisl, Jiří Mikyška, Hana Petzeltová and Peter Takáč Springer Proceedings in Mathematics & Statistics, From Particle Systems to Partial Differential Equations 209 139 (2017) https://doi.org/10.1007/978-3-319-66839-0_7
Boundary conditions for the Stokes fluid in a bounded domain with a thin layer
Zhengan Yao and Hongxing Zhao Kinetic and Related Models 9 (4) 797 (2016) https://doi.org/10.3934/krm.2016017
On uniform estimates for Laplace equation in balls with small holes
Yong Lu Calculus of Variations and Partial Differential Equations 55 (5) (2016) https://doi.org/10.1007/s00526-016-1055-y
Asymptotic behavior of the incompressible Navier-Stokes fluid with degree of freedom in porous medium
Hongxing Zhao and Zhengan Yao Chinese Annals of Mathematics, Series B 37 (6) 853 (2016) https://doi.org/10.1007/s11401-016-0148-4
Impermeability Through a Perforated Domain for the Incompressible two dimensional Euler Equations
Christophe Lacave and Nader Masmoudi Archive for Rational Mechanics and Analysis 221 (3) 1117 (2016) https://doi.org/10.1007/s00205-016-0980-4
Homogenization of compressible two-phase two-component flow in porous media
B. Amaziane and L. Pankratov Nonlinear Analysis: Real World Applications 30 213 (2016) https://doi.org/10.1016/j.nonrwa.2016.01.006
Homogenization of Stationary Navier–Stokes Equations in Domains with Tiny Holes
Eduard Feireisl and Yong Lu Journal of Mathematical Fluid Mechanics 17 (2) 381 (2015) https://doi.org/10.1007/s00021-015-0200-2
Asymptotic Analysis of Acoustic Waves in a Porous Medium: Microincompressible Flow
Jose Diaz-Alban and Nader Masmoudi Communications in Partial Differential Equations 39 (11) 2125 (2014) https://doi.org/10.1080/03605302.2014.926371
STABILITY WITH RESPECT TO DOMAIN OF THE LOW MACH NUMBER LIMIT OF COMPRESSIBLE VISCOUS FLUIDS
EDUARD FEIREISL, TRYGVE KARPER, ONDŘEJ KREML and JAN STEBEL Mathematical Models and Methods in Applied Sciences 23 (13) 2465 (2013) https://doi.org/10.1142/S0218202513500371
Homogenization of the time discretized compressible Navier–Stokes system
Hongxing Zhao and Zheng-an Yao Nonlinear Analysis: Theory, Methods & Applications 75 (4) 2486 (2012) https://doi.org/10.1016/j.na.2011.10.040
Homogenization and singular limits for the complete Navier–Stokes–Fourier system
Eduard Feireisl, Antonín Novotný and Takéo Takahashi Journal de Mathématiques Pures et Appliquées 94 (1) 33 (2010) https://doi.org/10.1016/j.matpur.2009.11.006
ASYMPTOTIC ANALYSIS OF AN ISOTHERMAL GAS FLOW THROUGH A LONG OR THIN PIPE
EDUARD MARUŠIĆ-PALOKA and MAJA STARČEVIĆ Mathematical Models and Methods in Applied Sciences 19 (04) 631 (2009) https://doi.org/10.1142/S0218202509003553
Homogenization of a non-stationary Stokes flow in porous medium including a layer
Hongxing Zhao and Zheng-an Yao Journal of Mathematical Analysis and Applications 342 (1) 108 (2008) https://doi.org/10.1016/j.jmaa.2007.11.040
Topology optimization of fluid domains: kinetic theory approach
A. Evgrafov, G. Pingen and K. Maute ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 88 (2) 129 (2008) https://doi.org/10.1002/zamm.200700122
On the justification of the Reynolds equation, describing isentropic compressible flows through a tiny pore
Andro Mikelić ANNALI DELL'UNIVERSITA' DI FERRARA 53 (1) 95 (2007) https://doi.org/10.1007/s11565-007-0007-z
Homogenization of the Euler system in a 2D porous medium
P.-L. Lions and N. Masmoudi Journal de Mathématiques Pures et Appliquées 84 (1) 1 (2005) https://doi.org/10.1016/j.matpur.2004.09.008
Rigorous justification of the Reynolds equations for gas lubrication
Eduard Marušić-Paloka and Maja Starčević Comptes Rendus. Mécanique 333 (7) 534 (2005) https://doi.org/10.1016/j.crme.2005.06.006