Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Pontryagin's principle and variational inequality for optimal control problems governed by viscous Camassa–Holm equations

Cung The Anh, Nguyen Hai Ha Giang and Than Thi Thuy Nguyen
Optimization 73 (13) 3899 (2024)
https://doi.org/10.1080/02331934.2023.2239835

Optimal control of 3D Navier-Stokes-Voigt equations for convex control constraints

Cung The Anh and Vu Hai Son
Evolution Equations and Control Theory (2024)
https://doi.org/10.3934/eect.2024056

Pontryagin’s Maximum Principle for a State-Constrained System of Douglis-Nirenberg Type

Alexey S. Matveev and Dmitrii V. Sugak
Journal of Optimization Theory and Applications (2024)
https://doi.org/10.1007/s10957-024-02499-y

The velocity tracking problem for Navier–Stokes equations with pointwise-integral control constraints in time-space

Eduardo Casas and Konstantinos Chrysafinos
Optimization 1 (2024)
https://doi.org/10.1080/02331934.2024.2425734

Stability analysis of the Navier–Stokes velocity tracking problem with bang-bang controls

Alberto Domínguez Corella, Nicolai Jork, Šárka Nečasová and John Sebastian H. Simon
Journal of Optimization Theory and Applications 201 (2) 790 (2024)
https://doi.org/10.1007/s10957-024-02413-6

Optimal control of the 3D damped Navier-Stokes-Voigt equations with control constraints

Sakthivel Kumarasamy
Evolution Equations and Control Theory 12 (1) 282 (2023)
https://doi.org/10.3934/eect.2022030

Stochastic Collocation Method for Stochastic Optimal Boundary Control of the Navier–Stokes Equations

Wenju Zhao and Max Gunzburger
Applied Mathematics & Optimization 87 (1) (2023)
https://doi.org/10.1007/s00245-022-09910-y

Optimal control problems governed by two dimensional convective Brinkman-Forchheimer equations

Manil T. Mohan
Evolution Equations and Control Theory 11 (3) 649 (2022)
https://doi.org/10.3934/eect.2021020

First-order necessary conditions of optimality for the optimal control of two-dimensional convective Brinkman–Forchheimer equations with state constraints

Manil T. Mohan
Optimization 71 (13) 3861 (2022)
https://doi.org/10.1080/02331934.2021.1925895

Optimal Control of the Two-Dimensional Evolutionary Navier--Stokes Equations with Measure Valued Controls

Eduardo Casas and Karl Kunisch
SIAM Journal on Control and Optimization 59 (3) 2223 (2021)
https://doi.org/10.1137/20M1351400

A Posteriori Error Estimates for a Distributed Optimal Control Problem of the Stationary Navier--Stokes Equations

Alejandro Allendes, Francisco Fuica, Enrique Otarola and Daniel Quero
SIAM Journal on Control and Optimization 59 (4) 2898 (2021)
https://doi.org/10.1137/20M1329792

Critical Cones for Sufficient Second Order Conditions in PDE Constrained Optimization

Eduardo Casas and Mariano Mateos
SIAM Journal on Optimization 30 (1) 585 (2020)
https://doi.org/10.1137/19M1258244

Pontryagin maximum principle and second order optimality conditions for optimal control problems governed by 2D nonlocal Cahn–Hilliard–Navier–Stokes equations

Tania Biswas, Sheetal Dharmatti and Manil T. Mohan
Analysis 40 (3) 127 (2020)
https://doi.org/10.1515/anly-2019-0049

Multigrid Preconditioners for the Newton--Krylov Method in the Optimal Control of the Stationary Navier--Stokes Equations

Ana Maria Soane and Andrei Drăgănescu
SIAM Journal on Numerical Analysis 57 (3) 1494 (2019)
https://doi.org/10.1137/18M1175264

Feedback Stabilization of the Two-Dimensional Navier–Stokes Equations by Value Function Approximation

Tobias Breiten, Karl Kunisch and Laurent Pfeiffer
Applied Mathematics & Optimization 80 (3) 599 (2019)
https://doi.org/10.1007/s00245-019-09586-x

Optimal Control of the Two-Dimensional Stationary Navier--Stokes Equations with Measure Valued Controls

Eduardo Casas and Karl Kunisch
SIAM Journal on Control and Optimization 57 (2) 1328 (2019)
https://doi.org/10.1137/18M1185582

Error estimates for the approximation of the velocity tracking problem with Bang-Bang controls

Eduardo Casas and Konstantinos Chrysafinos
ESAIM: Control, Optimisation and Calculus of Variations 23 (4) 1267 (2017)
https://doi.org/10.1051/cocv/2016054

First Order Sufficient Optimality Conditions for Navier--Stokes Flow. Dual Feedback Controls

Andrzej Nowakowski
SIAM Journal on Control and Optimization 55 (4) 2734 (2017)
https://doi.org/10.1137/16M1082998

On the optimal control problem for the Novikov equation with strong viscosity

Jiangbo Zhou, Xiaoqing Yang, Junde Chen and Wenbin Zhang
Journal of Mathematical Analysis and Applications 433 (2) 1084 (2016)
https://doi.org/10.1016/j.jmaa.2015.08.025

Analysis of the Velocity Tracking Control Problem for the 3D Evolutionary Navier--Stokes Equations

Eduardo Casas and Konstantinos Chrysafinos
SIAM Journal on Control and Optimization 54 (1) 99 (2016)
https://doi.org/10.1137/140978107

The effect of a sparse grad–div stabilization on control of stationary Navier–Stokes equations

A. Çıbık
Journal of Mathematical Analysis and Applications 437 (1) 613 (2016)
https://doi.org/10.1016/j.jmaa.2016.01.019

Trends in Differential Equations and Applications

Eduardo Casas and Konstantinos Chrysafinos
SEMA SIMAI Springer Series, Trends in Differential Equations and Applications 8 51 (2016)
https://doi.org/10.1007/978-3-319-32013-7_4

Semi-discrete a priori error analysis for the optimal control of the unsteady Navier–Stokes equations with variational multiscale stabilization

Fikriye Yılmaz
Applied Mathematics and Computation 276 127 (2016)
https://doi.org/10.1016/j.amc.2015.11.092

A projection-based variational multiscale method for the optimal control problems governed by the stationary Navier–Stokes equations

Fikriye Yılmaz and Aytekin Çıbık
Applied Numerical Mathematics 106 116 (2016)
https://doi.org/10.1016/j.apnum.2016.03.005

Optimal Control of the Instationary Three Dimensional Navier-Stokes-Voigt Equations

Cung The Anh and Tran Minh Nguyet
Numerical Functional Analysis and Optimization 37 (4) 415 (2016)
https://doi.org/10.1080/01630563.2015.1136891

Second Order Optimality Conditions and Their Role in PDE Control

Eduardo Casas and Fredi Tröltzsch
Jahresbericht der Deutschen Mathematiker-Vereinigung 117 (1) 3 (2015)
https://doi.org/10.1365/s13291-014-0109-3

Symmetric error estimates for discontinuous Galerkin time-stepping schemes for optimal control problems constrained to evolutionary Stokes equations

Konstantinos Chrysafinos and Efthimios N. Karatzas
Computational Optimization and Applications 60 (3) 719 (2015)
https://doi.org/10.1007/s10589-014-9695-3

A Discontinuous Galerkin Time-Stepping Scheme for the Velocity Tracking Problem

Eduardo Casas and Konstantinos Chrysafinos
SIAM Journal on Numerical Analysis 50 (5) 2281 (2012)
https://doi.org/10.1137/110829404

Active Flow Control II

Christian John, Bernd R. Noack, Michael Schlegel, Fredi Tröltzsch and Daniel Wachsmuth
Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Active Flow Control II 108 405 (2010)
https://doi.org/10.1007/978-3-642-11735-0_26

Optimal Dirichlet Boundary Control of Stationary Navier–Stokes Equations with State Constraint

C. John and D. Wachsmuth
Numerical Functional Analysis and Optimization 30 (11-12) 1309 (2009)
https://doi.org/10.1080/01630560903499001

State-constrained optimal control of the three-dimensional stationary Navier–Stokes equations

J.C. De Los Reyes and R. Griesse
Journal of Mathematical Analysis and Applications 343 (1) 257 (2008)
https://doi.org/10.1016/j.jmaa.2008.01.029

Control of Coupled Partial Differential Equations

Daniel Wachsmuth
International Series of Numerical Mathematics, Control of Coupled Partial Differential Equations 155 311 (2007)
https://doi.org/10.1007/978-3-7643-7721-2_14

Analysis of the SQP-Method for Optimal Control Problems Governed by the Nonstationary Navier–Stokes Equations Based on $L^p$-theory

Daniel Wachsmuth
SIAM Journal on Control and Optimization 46 (3) 1133 (2007)
https://doi.org/10.1137/S0363012904443506

Optimal Control of the Stationary Navier–Stokes Equations with Mixed Control‐State Constraints

J. C. de los Reyes and F. Tröltzsch
SIAM Journal on Control and Optimization 46 (2) 604 (2007)
https://doi.org/10.1137/050646949

Quantitative stability analysis of optimal solutions in PDE-constrained optimization

Kerstin Brandes and Roland Griesse
Journal of Computational and Applied Mathematics 206 (2) 908 (2007)
https://doi.org/10.1016/j.cam.2006.08.038

Optimal Vortex Reduction for Instationary Flows Based on Translation Invariant Cost Functionals

K. Kunisch and B. Vexler
SIAM Journal on Control and Optimization 46 (4) 1368 (2007)
https://doi.org/10.1137/050632774

Second-order sufficient optimality conditions for a semilinear optimal control problem with nonlocal radiation interface conditions

Christian Meyer
ESAIM: Control, Optimisation and Calculus of Variations 13 (4) 750 (2007)
https://doi.org/10.1051/cocv:2007028

Error Estimates for the Numerical Approximation of a Distributed Control Problem for the Steady-State Navier–Stokes Equations

Eduardo Casas, Mariano Mateos and Jean-Pierre Raymond
SIAM Journal on Control and Optimization 46 (3) 952 (2007)
https://doi.org/10.1137/060649999

Systems, Control, Modeling and Optimization

D. Wachsmuth
IFIP International Federation for Information Processing, Systems, Control, Modeling and Optimization 202 319 (2006)
https://doi.org/10.1007/0-387-33882-9_30