The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Fredi Tröltzsch , Daniel Wachsmuth
ESAIM: COCV, 12 1 (2006) 93-119
Published online: 2005-12-15
This article has been cited by the following article(s):
55 articles
Pontryagin's principle and variational inequality for optimal control problems governed by viscous Camassa–Holm equations
Cung The Anh, Nguyen Hai Ha Giang and Than Thi Thuy Nguyen Optimization 73 (13) 3899 (2024) https://doi.org/10.1080/02331934.2023.2239835
Optimal control of 3D Navier-Stokes-Voigt equations for convex control constraints
Cung The Anh and Vu Hai Son Evolution Equations and Control Theory (2024) https://doi.org/10.3934/eect.2024056
First- and second-order optimality conditions for the control of infinite horizon Navier–Stokes equations
Eduardo Casas and Karl Kunisch Optimization 1 (2024) https://doi.org/10.1080/02331934.2024.2358406
Pontryagin’s Maximum Principle for a State-Constrained System of Douglis-Nirenberg Type
Alexey S. Matveev and Dmitrii V. Sugak Journal of Optimization Theory and Applications (2024) https://doi.org/10.1007/s10957-024-02499-y
The velocity tracking problem for Navier–Stokes equations with pointwise-integral control constraints in time-space
Eduardo Casas and Konstantinos Chrysafinos Optimization 1 (2024) https://doi.org/10.1080/02331934.2024.2425734
Stability analysis of the Navier–Stokes velocity tracking problem with bang-bang controls
Alberto Domínguez Corella, Nicolai Jork, Šárka Nečasová and John Sebastian H. Simon Journal of Optimization Theory and Applications 201 (2) 790 (2024) https://doi.org/10.1007/s10957-024-02413-6
Optimal control of the 3D damped Navier-Stokes-Voigt equations with control constraints
Sakthivel Kumarasamy Evolution Equations and Control Theory 12 (1) 282 (2023) https://doi.org/10.3934/eect.2022030
Optimal control of two dimensional third grade fluids
Yassine Tahraoui and Fernanda Cipriano Journal of Mathematical Analysis and Applications 523 (2) 127032 (2023) https://doi.org/10.1016/j.jmaa.2023.127032
Time Optimal Control Problem of the 2D MHD Equations with Memory
Dang Thanh Son and Nguyen Duong Toan Journal of Dynamical and Control Systems 29 (4) 1323 (2023) https://doi.org/10.1007/s10883-022-09635-9
Stochastic Collocation Method for Stochastic Optimal Boundary Control of the Navier–Stokes Equations
Wenju Zhao and Max Gunzburger Applied Mathematics & Optimization 87 (1) (2023) https://doi.org/10.1007/s00245-022-09910-y
Time Optimal Control Problem of the 3D Navier-Stokes-α Equations
Dang Thanh Son and Le Thi Thuy Numerical Functional Analysis and Optimization 43 (6) 667 (2022) https://doi.org/10.1080/01630563.2022.2055062
Optimal control problems governed by two dimensional convective Brinkman-Forchheimer equations
Manil T. Mohan Evolution Equations and Control Theory 11 (3) 649 (2022) https://doi.org/10.3934/eect.2021020
First-order necessary conditions of optimality for the optimal control of two-dimensional convective Brinkman–Forchheimer equations with state constraints
Manil T. Mohan Optimization 71 (13) 3861 (2022) https://doi.org/10.1080/02331934.2021.1925895
An optimal control problem of the 3D viscous Camassa–Holm equations
Cung The Anh and Dang Thanh Son Optimization 70 (1) 3 (2021) https://doi.org/10.1080/02331934.2019.1696340
Optimal Control of the Two-Dimensional Evolutionary Navier--Stokes Equations with Measure Valued Controls
Eduardo Casas and Karl Kunisch SIAM Journal on Control and Optimization 59 (3) 2223 (2021) https://doi.org/10.1137/20M1351400
The Time Optimal Control of Two Dimensional Convective Brinkman–Forchheimer Equations
Manil T. Mohan Applied Mathematics & Optimization 84 (3) 3295 (2021) https://doi.org/10.1007/s00245-021-09748-w
A Posteriori Error Estimates for a Distributed Optimal Control Problem of the Stationary Navier--Stokes Equations
Alejandro Allendes, Francisco Fuica, Enrique Otarola and Daniel Quero SIAM Journal on Control and Optimization 59 (4) 2898 (2021) https://doi.org/10.1137/20M1329792
Convergence of the SQP method for quasilinear parabolic optimal control problems
Fabian Hoppe and Ira Neitzel Optimization and Engineering 22 (4) 2039 (2021) https://doi.org/10.1007/s11081-020-09547-2
Optimal Control of Nonclassical Diffusion Equations with Memory
Nguyen Duong Toan Acta Applicandae Mathematicae 169 (1) 533 (2020) https://doi.org/10.1007/s10440-020-00310-4
Feedback control for non-stationary 3D Navier–Stokes–Voigt equations
Biao Zeng Mathematics and Mechanics of Solids 25 (12) 2210 (2020) https://doi.org/10.1177/1081286520926557
Optimal Control of Time-Periodic Navier-Stokes-Voigt Equations
Cung The Anh and Tran Minh Nguyet Numerical Functional Analysis and Optimization 41 (13) 1588 (2020) https://doi.org/10.1080/01630563.2020.1786838
Critical Cones for Sufficient Second Order Conditions in PDE Constrained Optimization
Eduardo Casas and Mariano Mateos SIAM Journal on Optimization 30 (1) 585 (2020) https://doi.org/10.1137/19M1258244
Pontryagin maximum principle and second order optimality conditions for optimal control problems governed by 2D nonlocal Cahn–Hilliard–Navier–Stokes equations
Tania Biswas, Sheetal Dharmatti and Manil T. Mohan Analysis 40 (3) 127 (2020) https://doi.org/10.1515/anly-2019-0049
Time Optimal Control of the Unsteady 3D Navier–Stokes–Voigt Equations
Cung The Anh and Tran Minh Nguyet Applied Mathematics & Optimization 79 (2) 397 (2019) https://doi.org/10.1007/s00245-017-9441-1
Multigrid Preconditioners for the Newton--Krylov Method in the Optimal Control of the Stationary Navier--Stokes Equations
Ana Maria Soane and Andrei Drăgănescu SIAM Journal on Numerical Analysis 57 (3) 1494 (2019) https://doi.org/10.1137/18M1175264
No-gap optimality conditions for an optimal control problem with pointwise control-state constraints
Nguyen Hai Son and Tran Minh Nguyet Applicable Analysis 98 (6) 1120 (2019) https://doi.org/10.1080/00036811.2017.1416102
Feedback Stabilization of the Two-Dimensional Navier–Stokes Equations by Value Function Approximation
Tobias Breiten, Karl Kunisch and Laurent Pfeiffer Applied Mathematics & Optimization 80 (3) 599 (2019) https://doi.org/10.1007/s00245-019-09586-x
Optimal Control of the Two-Dimensional Stationary Navier--Stokes Equations with Measure Valued Controls
Eduardo Casas and Karl Kunisch SIAM Journal on Control and Optimization 57 (2) 1328 (2019) https://doi.org/10.1137/18M1185582
Error estimates for the approximation of the velocity tracking problem with Bang-Bang controls
Eduardo Casas and Konstantinos Chrysafinos ESAIM: Control, Optimisation and Calculus of Variations 23 (4) 1267 (2017) https://doi.org/10.1051/cocv/2016054
First Order Sufficient Optimality Conditions for Navier--Stokes Flow. Dual Feedback Controls
Andrzej Nowakowski SIAM Journal on Control and Optimization 55 (4) 2734 (2017) https://doi.org/10.1137/16M1082998
On the optimal control problem for the Novikov equation with strong viscosity
Jiangbo Zhou, Xiaoqing Yang, Junde Chen and Wenbin Zhang Journal of Mathematical Analysis and Applications 433 (2) 1084 (2016) https://doi.org/10.1016/j.jmaa.2015.08.025
Analysis of the Velocity Tracking Control Problem for the 3D Evolutionary Navier--Stokes Equations
Eduardo Casas and Konstantinos Chrysafinos SIAM Journal on Control and Optimization 54 (1) 99 (2016) https://doi.org/10.1137/140978107
The effect of a sparse grad–div stabilization on control of stationary Navier–Stokes equations
A. Çıbık Journal of Mathematical Analysis and Applications 437 (1) 613 (2016) https://doi.org/10.1016/j.jmaa.2016.01.019
Trends in Differential Equations and Applications
Eduardo Casas and Konstantinos Chrysafinos SEMA SIMAI Springer Series, Trends in Differential Equations and Applications 8 51 (2016) https://doi.org/10.1007/978-3-319-32013-7_4
Semi-discrete a priori error analysis for the optimal control of the unsteady Navier–Stokes equations with variational multiscale stabilization
Fikriye Yılmaz Applied Mathematics and Computation 276 127 (2016) https://doi.org/10.1016/j.amc.2015.11.092
A projection-based variational multiscale method for the optimal control problems governed by the stationary Navier–Stokes equations
Fikriye Yılmaz and Aytekin Çıbık Applied Numerical Mathematics 106 116 (2016) https://doi.org/10.1016/j.apnum.2016.03.005
Optimal Control of the Instationary Three Dimensional Navier-Stokes-Voigt Equations
Cung The Anh and Tran Minh Nguyet Numerical Functional Analysis and Optimization 37 (4) 415 (2016) https://doi.org/10.1080/01630563.2015.1136891
Second Order Optimality Conditions and Their Role in PDE Control
Eduardo Casas and Fredi Tröltzsch Jahresbericht der Deutschen Mathematiker-Vereinigung 117 (1) 3 (2015) https://doi.org/10.1365/s13291-014-0109-3
Symmetric error estimates for discontinuous Galerkin time-stepping schemes for optimal control problems constrained to evolutionary Stokes equations
Konstantinos Chrysafinos and Efthimios N. Karatzas Computational Optimization and Applications 60 (3) 719 (2015) https://doi.org/10.1007/s10589-014-9695-3
Error estimates for the discretization of the velocity tracking problem
Eduardo Casas and Konstantinos Chrysafinos Numerische Mathematik 130 (4) 615 (2015) https://doi.org/10.1007/s00211-014-0680-7
Optimal Control of Shear-Thickening Flows
Nadir Arada SIAM Journal on Control and Optimization 51 (3) 1940 (2013) https://doi.org/10.1137/11085551X
A Discontinuous Galerkin Time-Stepping Scheme for the Velocity Tracking Problem
Eduardo Casas and Konstantinos Chrysafinos SIAM Journal on Numerical Analysis 50 (5) 2281 (2012) https://doi.org/10.1137/110829404
Active Flow Control II
Christian John, Bernd R. Noack, Michael Schlegel, Fredi Tröltzsch and Daniel Wachsmuth Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Active Flow Control II 108 405 (2010) https://doi.org/10.1007/978-3-642-11735-0_26
Optimal Dirichlet Boundary Control of Stationary Navier–Stokes Equations with State Constraint
C. John and D. Wachsmuth Numerical Functional Analysis and Optimization 30 (11-12) 1309 (2009) https://doi.org/10.1080/01630560903499001
State-constrained optimal control of the three-dimensional stationary Navier–Stokes equations
J.C. De Los Reyes and R. Griesse Journal of Mathematical Analysis and Applications 343 (1) 257 (2008) https://doi.org/10.1016/j.jmaa.2008.01.029
Optimal control of Navier–Stokes equations by Oseen approximation
Miroslav Pošta and Tomáš Roubíček Computers & Mathematics with Applications 53 (3-4) 569 (2007) https://doi.org/10.1016/j.camwa.2006.02.034
Control of Coupled Partial Differential Equations
Daniel Wachsmuth International Series of Numerical Mathematics, Control of Coupled Partial Differential Equations 155 311 (2007) https://doi.org/10.1007/978-3-7643-7721-2_14
Analysis of the SQP-Method for Optimal Control Problems Governed by the Nonstationary Navier–Stokes Equations Based on $L^p$-theory
Daniel Wachsmuth SIAM Journal on Control and Optimization 46 (3) 1133 (2007) https://doi.org/10.1137/S0363012904443506
Optimal Control of the Stationary Navier–Stokes Equations with Mixed Control‐State Constraints
J. C. de los Reyes and F. Tröltzsch SIAM Journal on Control and Optimization 46 (2) 604 (2007) https://doi.org/10.1137/050646949
Quantitative stability analysis of optimal solutions in PDE-constrained optimization
Kerstin Brandes and Roland Griesse Journal of Computational and Applied Mathematics 206 (2) 908 (2007) https://doi.org/10.1016/j.cam.2006.08.038
Optimal Vortex Reduction for Instationary Flows Based on Translation Invariant Cost Functionals
K. Kunisch and B. Vexler SIAM Journal on Control and Optimization 46 (4) 1368 (2007) https://doi.org/10.1137/050632774
Second-order sufficient optimality conditions for a semilinear optimal control problem with nonlocal radiation interface conditions
Christian Meyer ESAIM: Control, Optimisation and Calculus of Variations 13 (4) 750 (2007) https://doi.org/10.1051/cocv:2007028
Error Estimates for the Numerical Approximation of a Distributed Control Problem for the Steady-State Navier–Stokes Equations
Eduardo Casas, Mariano Mateos and Jean-Pierre Raymond SIAM Journal on Control and Optimization 46 (3) 952 (2007) https://doi.org/10.1137/060649999
Sufficient second-order optimality conditions for convex control constraints
Daniel Wachsmuth Journal of Mathematical Analysis and Applications 319 (1) 228 (2006) https://doi.org/10.1016/j.jmaa.2005.12.048
Systems, Control, Modeling and Optimization
D. Wachsmuth IFIP International Federation for Information Processing, Systems, Control, Modeling and Optimization 202 319 (2006) https://doi.org/10.1007/0-387-33882-9_30