Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

The effects of nonlinear perturbation terms on comparison principles for the p-Laplacian

Ahmed Mohammed and Antonio Vitolo
Bulletin of Mathematical Sciences 14 (02) (2024)
https://doi.org/10.1142/S166436072450005X

Weak positive solutions to singular quasilinear elliptic equation

Chouhaïd Souissi, Mounir Hsini, Nawal Irzi and Wakaa Ali Hadba
Georgian Mathematical Journal (2024)
https://doi.org/10.1515/gmj-2024-2020

Existence and Regularity of Solutions for Unbounded Elliptic Equations with Singular Nonlinearities

Aziz Bouhlal, Jaouad Igbida and Jaume Giné
International Journal of Differential Equations 2021 1 (2021)
https://doi.org/10.1155/2021/5589504

Asymptotic behavior and existence of solutions for singular elliptic equations

Riccardo Durastanti
Annali di Matematica Pura ed Applicata (1923 -) 199 (3) 925 (2020)
https://doi.org/10.1007/s10231-019-00906-0

Regularity of Extremal Solutions to Nonlinear Elliptic Equations with Quadratic Convection and General Reaction

Asadollah Aghajani, Fatemeh Mottaghi and Vicenţiu D. Rădulescu
Mediterranean Journal of Mathematics 17 (6) (2020)
https://doi.org/10.1007/s00009-020-01610-7

Asymptotic behavior of solutions for nonlinear parabolic operators with natural growth term and measure data

M. Abdellaoui
Journal of Pseudo-Differential Operators and Applications 11 (3) 1289 (2020)
https://doi.org/10.1007/s11868-019-00324-z

Two Classes of Nonlinear Singular Dirichlet Problems with Natural Growth: Existence and Asymptotic Behavior

Zhijun Zhang
Advanced Nonlinear Studies 20 (1) 77 (2020)
https://doi.org/10.1515/ans-2019-2054

Quasilinear elliptic problems with singular and homogeneous lower order terms

José Carmona, Tommaso Leonori, Salvador López-Martínez and Pedro J. Martínez-Aparicio
Nonlinear Analysis 179 105 (2019)
https://doi.org/10.1016/j.na.2018.08.002

Existence and Regularity Results for Some Elliptic Equations with Degenerate Coercivity and Singular Quadratic Lower-Order Terms

Rezak Souilah
Mediterranean Journal of Mathematics 16 (4) (2019)
https://doi.org/10.1007/s00009-019-1360-8

Comparison principles for p-Laplace equations with lower order terms

Tommaso Leonori, Alessio Porretta and Giuseppe Riey
Annali di Matematica Pura ed Applicata (1923 -) 196 (3) 877 (2017)
https://doi.org/10.1007/s10231-016-0600-9

Homogenization of singular quasilinear elliptic problems with natural growth in a domain with many small holes

José Carmona and Pedro J. Martínez-Aparicio
Discrete & Continuous Dynamical Systems - A 37 (1) 15 (2017)
https://doi.org/10.3934/dcds.2017002

Comparison principle for elliptic equations in divergence with singular lower order terms having natural growth

David Arcoya, José Carmona and Pedro J. Martínez-Aparicio
Communications in Contemporary Mathematics 19 (02) 1650013 (2017)
https://doi.org/10.1142/S0219199716500139

Morrey estimates for solutions of singular quadratic nonlinear equations

P. Cianci, G. R. Cirmi, S. D’Asero and S. Leonardi
Annali di Matematica Pura ed Applicata (1923 -) (2017)
https://doi.org/10.1007/s10231-017-0636-5

Existence of a continuum of solutions for a quasilinear elliptic singular problem

José Carmona Tapia, Alexis Molino Salas and Lourdes Moreno Mérida
Journal of Mathematical Analysis and Applications 436 (2) 1048 (2016)
https://doi.org/10.1016/j.jmaa.2015.12.034

A singular elliptic equation with natural growth in the gradient and a variable exponent

José Carmona, Pedro J. Martínez-Aparicio and Julio D. Rossi
Nonlinear Differential Equations and Applications NoDEA 22 (6) 1935 (2015)
https://doi.org/10.1007/s00030-015-0351-0

Gelfand type quasilinear elliptic problems with quadratic gradient terms

José Carmona, Pedro J. Martínez-Aparicio and David Arcoya
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 31 (2) 249 (2014)
https://doi.org/10.1016/j.anihpc.2013.03.002

Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions

David Arcoya, Colette De Coster, Louis Jeanjean and Kazunaga Tanaka
Journal of Mathematical Analysis and Applications 420 (1) 772 (2014)
https://doi.org/10.1016/j.jmaa.2014.06.007

Existence and non-existence of positive solutions for nonlinear elliptic singular equations with natural growth

José Carmona, Pedro J. Martínez-Aparicio and Antonio Suárez
Nonlinear Analysis: Theory, Methods & Applications 89 157 (2013)
https://doi.org/10.1016/j.na.2013.05.015

Elliptic equations having a singular quadratic gradient term and a changing sign datum

Sergio Segura de León, Francesco Petitta and Daniela Giachetti
Communications on Pure and Applied Analysis 11 (5) 1875 (2012)
https://doi.org/10.3934/cpaa.2012.11.1875

Nonexistence of solutions for singular elliptic equations with a quadratic gradient term

Wenshu Zhou, Xiaodan Wei and Xulong Qin
Nonlinear Analysis: Theory, Methods & Applications 75 (15) 5845 (2012)
https://doi.org/10.1016/j.na.2012.06.001

Parabolic equations with nonlinear singularities

Pedro J. Martínez-Aparicio and Francesco Petitta
Nonlinear Analysis: Theory, Methods & Applications 74 (1) 114 (2011)
https://doi.org/10.1016/j.na.2010.08.023

QUASILINEAR ELLIPTIC EQUATIONS WITH SINGULAR QUADRATIC GROWTH TERMS

LUCIO BOCCARDO, TOMMASO LEONORI, LUIGI ORSINA and FRANCESCO PETITTA
Communications in Contemporary Mathematics 13 (04) 607 (2011)
https://doi.org/10.1142/S0219199711004300

Bifurcation for Quasilinear Elliptic Singular BVP

David Arcoya, José Carmona and Pedro J. Martínez-Aparicio
Communications in Partial Differential Equations 36 (4) 670 (2011)
https://doi.org/10.1080/03605302.2010.501835

Existence and nonexistence of solutions for singular quadratic quasilinear equations

David Arcoya, José Carmona, Tommaso Leonori, et al.
Journal of Differential Equations 246 (10) 4006 (2009)
https://doi.org/10.1016/j.jde.2009.01.016