Issue |
ESAIM: COCV
Volume 5, 2000
|
|
---|---|---|
Page(s) | 139 - 156 | |
DOI | https://doi.org/10.1051/cocv:2000104 | |
Published online | 15 August 2002 |
Computation of the distance to semi-algebraic sets
Département Mathématiques Appliquées et Analyse
Numérique, Centre National d'Études Spatiales, 18 avenue E. Belin,
31401 Toulouse Cedex 4, France; Christophe.Ferrier@cnes.fr.
Received:
23
September
1998
Revised:
1
October
1999
This paper is devoted to the computation of distance to set, called S, defined by polynomial equations. First we consider the case of quadratic systems. Then, application of results stated for quadratic systems to the quadratic equivalent of polynomial systems (see [5]), allows us to compute distance to semi-algebraic sets. Problem of computing distance can be viewed as non convex minimization problem: , where u is in
. To have, at least, lower approximation of distance, we consider the dual bound m(u) associated with the dual problem and give sufficient conditions to guarantee m(u) = d(u,S). The second part deal with numerical computation of m(u) using an interior point method in semidefinite programming. Last, various examples, namely from chemistry and robotic, are given.
Résumé
Dans cet article nous nous intéressons au calcul de la distance
à un ensemble S défini par des équations polynomiales. Nous
considérons d'abord le cas quadratique. Le passage au cas polynomial se
fait ensuite grâce aux équivalents quadratiques des systèmes polynomiaux
développés dans [5]. Le calcul de la distance peut être vu comme un
problème de minimisation non convexe
où
. Pour obtenir, au moins un minorant de cette distance,
nous considérons la borne duale m(u) issue de la résolution du
problème dual. De plus, nous donnons des conditions suffisantes pour
avoir m(u) = d(u,S). La seconde partie de cet article est consacrée au
calcul de m(u) en utilisant une méthode de points intérieurs en
programmation semi-définie positive. Pour finir, nous donnons des
exemples d'applications issus notamment de la chimie et de la robotique.
Mathematics Subject Classification: 90C46
Key words: Distance / dual bond / optimality conditions / polynomial systems / interior point methods / semidefinite programming / location of zeros.
© EDP Sciences, SMAI, 2000
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.