Free Access
Issue
ESAIM: COCV
Volume 5, 2000
Page(s) 139 - 156
DOI https://doi.org/10.1051/cocv:2000104
Published online 15 August 2002
  1. F. Alizadeth, Interior point methods in semidefinite programming with application to combinatorial optimisation. SIAM J. Optim. 5 (1995) 13-51. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Bellido, Construction de fonctions d'itération pour le calcul simultané des solutions d'équations et de systèmes d'équations algébriques. Thèse de doctorat de l'Universté Paul Sabatier, Toulouse (1992). [Google Scholar]
  3. S. Boyd et al., Linear Matrix Inequalities Problem in Control Theory. SIAM, Philadelphia, Stud. Appl. Math. 15 (1995). [Google Scholar]
  4. J.-P. Dedieu and J.-C. Yakoubsohn, Localization of an algebraic hypersurface by the exclusion algorithm. Appl. Algebra Engrg. Comm. Comput. 2 (1992) 239-256. [CrossRef] [MathSciNet] [Google Scholar]
  5. Ch. Ferrier, Hilbert's 17th problem and best dual bounds in quadratic minimization. Cybernetics and System Analysis 5 (1998) 76-91. [Google Scholar]
  6. A.V. Fiacco and G.P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques. John Wiley (1968). Reprinted SIAM, 1990. [Google Scholar]
  7. R. Fletcher, Semi-definite matrix constraints in optimization. SIAM J. Control Optim. 23 (1985) 493-513. [CrossRef] [MathSciNet] [Google Scholar]
  8. C. Lemarechal and J.-B. Hiriart-Urruty, Convex Analysis and Minimization Algorithms II. Springer Verlag, Comprehensive Studies in Mathematics 306 (1991). [Google Scholar]
  9. F. Jarre, Interior-point methods for convex programming. Appl. Math. Optim. 26 (1992) 287-391. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Jarre, An interior-point method for minimizing the maximum eigenvalue of a linear combination of matrices. SIAM J. Control Optim. 31 (1993) 1360-1377. [CrossRef] [MathSciNet] [Google Scholar]
  11. N. Karmarkar, A new polynomial-time algorithm for linear programming. Combinatorica 4 (1984) 373-395. [CrossRef] [MathSciNet] [Google Scholar]
  12. R.B. Kearfott, Some tests of generalized bisection. ACM Trans. Math. Software 13 (1987) 197-200. [CrossRef] [MathSciNet] [Google Scholar]
  13. Yu. Nesterov and A. Nemirovsky, Interior-point polynomial methods in convex programming. SIAM, Philadelphia, Stud. Appl. Math. 13 (1994). [Google Scholar]
  14. N.Z. Shor, Dual estimate in multi-extremal problems. J. Global Optim. 2 (1992) 411-418. [CrossRef] [MathSciNet] [Google Scholar]
  15. G. Sonnevend, An ``analytical centre'' for polyhedrons and a new classe of global algorithms for linear (smooth, convex) programming. Springer Verlag, Lecture Notes in Control and Inform. Sci. 84, System Modeling and Optimisation. 12th IFIP Conference on system optimisation 1984 (1986) 866-878. [Google Scholar]
  16. G. Sonnevend and J. Stoer, Global ellipsoidal approximation and homotopy methods for solving convex analitic programs. Appl. Math. Optim. 21 (1990) 139-165. [CrossRef] [MathSciNet] [Google Scholar]
  17. D.E. Stewart, Matrix Computation in C. University of Queensland, Australia (1992). ftp site: des@thrain.anu.edu.au. directory: pub/meschach [Google Scholar]
  18. L. Vandenberghe and S. Boyd, Semidefinite programming. SIAM Rev. 1 (1996) 49-95. [CrossRef] [MathSciNet] [Google Scholar]
  19. J. Verschelde, P. Verlinden and R. Cools, Homotopy exploiting newton polytopes for solving sparse polynomials systems. SIAM J. Numer. Anal. 31 (1994) 915-930. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Wright, Finding solutions to a system of polynomial equations. Math. Comp. 44 (1985) 125-133. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.