Issue |
ESAIM: COCV
Volume 9, February 2003
|
|
---|---|---|
Page(s) | 509 - 551 | |
DOI | https://doi.org/10.1051/cocv:2003025 | |
Published online | 15 September 2003 |
On determining unknown functions in differential systems, with an application to biological reactors.
Laboratoire d'Analyse Appliquée et Optimisation, Département de
Mathématiques, Université de Bourgogne, bâtiment
Mirande, BP. 47870,
21078 Dijon Cedex, France; busvelle@u-bourgogne.fr.
gauthier@u-bourgogne.fr.
Received:
12
June
2002
Revised:
14
January
2003
Revised:
23
March
2003
In this paper, we consider general nonlinear systems with observations, containing a (single) unknown function φ. We study the possibility to learn about this unknown function via the observations: if it is possible to determine the [values of the] unknown function from any experiment [on the set of states visited during the experiment], and for any arbitrary input function, on any time interval, we say that the system is “identifiable”. For systems without controls, we give a more or less complete picture of what happens for this identifiability property. This picture is very similar to the picture of the “observation theory” in [7]: Contrarily to the case of the observability property, in order to identify in practice, there is in general no hope to do something better than using “approximate differentiators”, as show very elementary examples. However, a practical methodology is proposed in some cases. It shows very reasonable performances. As an illustration of what may happen in controlled cases, we consider the equations of a biological reactor, [2,4], in which a population is fed by some substrate. The model heavily depends on a “growth function”, expressing the way the population grows in presence of the substrate. The problem is to identify this “growth function”. We give several identifiability results, and identification methods, adapted to this problem.
Mathematics Subject Classification: 93B07 / 93B10 / 93B30 / 78A70
Key words: Nonlinear systems / observability / identifiability / identification.
© EDP Sciences, SMAI, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.