Free Access
Issue |
ESAIM: COCV
Volume 5, 2000
|
|
---|---|---|
Page(s) | 293 - 311 | |
DOI | https://doi.org/10.1051/cocv:2000112 | |
Published online | 15 August 2002 |
- D. Aeyels, Stabilization of a class of nonlinear systems by smooth feedback control. Systems Control Lett. 5 (1985) 289-294. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Artstein, Stabilization with relaxed control. Nonlinear Anal. TMA 7 (1983) 1163-1173. [CrossRef] [MathSciNet] [Google Scholar]
- A. Bacciotti, Local stabilizability of nonlinear control systems. World Scientific, Singapore, River Edge, London, Ser. Adv. Math. Appl. Sci. 8 (1992). [Google Scholar]
- R.W. Brockett, Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory, edited by R.W. Brockett, R.S. Millman and H.J. Sussmann. Basel-Boston, Birkäuser (1983) 181-191. [Google Scholar]
- R.T. Bupp, D.S. Bernstein and V.T. Coppola, A benchmark problem for nonlinear control design. Internat J. Robust Nonlinear Control 8 (1998) 307-310. [CrossRef] [MathSciNet] [Google Scholar]
- height 2pt depth -1.6pt width 23pt, Experimental implementation of integrator back-stepping and passive nonlinear controllers on the RTAC testbed. Internat J. Robust Nonlinear Control 8 (1998) 435-457. [CrossRef] [MathSciNet] [Google Scholar]
- J.-M. Coron, L. Praly and A.R. Teel, Feedback stabilization of nonlinear system: Sufficient conditions and lyapunov and input-output techniques, in Trends in Control, a European Perspective, edited by A. Isidori. Springer-Verlag (1995) 283-348. [Google Scholar]
- L. Faubourg, La déformation de fonctions de Lyapunov, Rapport de DEA d'automatique et informatique industrielle. INRIA-Université de Lille 1 (1997). [Google Scholar]
- L. Faubourg and J.-B. Pomet, Strict control Lyapunov functions for homogeneous Jurdjevic-Quinn type systems, in Nonlinear Control Systems Design Symposium (NOLCOS'98), edited by H. Huijberts, H. Nijmeijer, A. van der Schaft and J. Scherpen. IFAC (1998) 823-829. [Google Scholar]
- L. Faubourg and J.-B. Pomet, Design of control Lyapunov functions for ``Jurdjevic-Quinn'' systems, in Stability and Stabilization of Nonlinear Systems, edited by D. Aeyels et al. Springer-Verlag, Lecture Notes in Contr. & Inform. Sci. (1999) 137-150. [Google Scholar]
- J.-P. Gauthier, Structure des Systèmes non-linéaires. Éditions du CNRS, Paris (1984). [Google Scholar]
- W. Hahn, Stability of Motion. Springer-Verlag, Berlin, New-York, Grundlehren Math. Wiss. 138 (1967). [Google Scholar]
- V. Jurdjevic and J.P. Quinn, Controllability and stability. J. Differential Equations 28 (1978) 381-389. [Google Scholar]
- M. Kawski, Homogeneous stabilizing feedback laws. Control Theory and Adv. Technol. 6 (1990), 497-516. [Google Scholar]
- H.K. Khalil, Nonlinear Systems. MacMillan, New York, Toronto, Singapore (1992). [Google Scholar]
- J. Kurzweil, On the inversion of Ljapunov's second theorem on stability of motion. AMS Trans., Ser. II 24 (1956) 19-77. [Google Scholar]
- J.-P. LaSalle, Stability theory for ordinary differential equations. J. Differential Equations 4 (1968) 57-65. [Google Scholar]
- W. Liu, Y. Chitour and E. Sontag, Remarks on finite gain stabilizability of linear systems subject to input saturation, in 32 IEEE Conf. on Decision and Control. San Antonio, USA (1993) 1808-1813. [Google Scholar]
- F. Mazenc, Stabilisation de trajectoires, ajout d'intégration, commandes saturées, Thèse de doctorat. École des Mines de Paris (1989). [Google Scholar]
- P. Morin, Robust stabilization of the angular velocity of a rigid body with two actuators. European J. Control 2 (1996) 51-56. [Google Scholar]
- R. Outbib and G. Sallet, Stabilizability of the angular velocity of a rigid body revisited. Systems Control Lett. 18 (1992) 93-98. [CrossRef] [MathSciNet] [Google Scholar]
- G. Sallet, Historique des techniques de Jurdjevic-Quinn (private communication). [Google Scholar]
- R. Sépulchre, M. Jankovic and P.V. Kokotovic, Constructive Nonlinear Control. Springer-Verlag, Comm. Control Engrg. Ser. (1997). [Google Scholar]
- E.D. Sontag, Feedback stabilization of nonlinear systems, in Robust control of linear systems and nonlinear control, Vol. 2 of proceedings of MTNS'89, edited by M.A. Kaashoek, J.H. van Schuppen and A. Ran. Basel-Boston, Birkhäuser (1990) 61-81. [Google Scholar]
- M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 1. Publish or Perish, Houston, second Ed. (1979). [Google Scholar]
- J. Tsinias, Remarks on feedback stabilizability of homogeneous systems. Control Theory and Adv. Technol. 6 (1990) 533-542. [Google Scholar]
- J. Zhao and I. Kanellakopoulos, Flexible back-stepping design for tracking and disturbance attenuation. Internat J. Robust Nonlinear Control 8 (1998) 331-348. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.