Free Access
Issue |
ESAIM: COCV
Volume 5, 2000
|
|
---|---|---|
Page(s) | 313 - 367 | |
DOI | https://doi.org/10.1051/cocv:2000113 | |
Published online | 15 August 2002 |
- A.N. Atassi and H.K. Khalil, A separation principle for the control of a class of nonlinear systems, in Proc. of the 37th IEEE Conference on Decision and Control. Tampa, FL (1998) 855-860. [Google Scholar]
- J.-P. Aubin and A. Cellina, Differential Inclusions: Set-valued Maps and Viability Theory. Springer-Verlag, New York (1984). [Google Scholar]
- J.-P. Aubin and H. Frankowska, Set-valued Analysis. Birkhauser, Boston (1990). [Google Scholar]
- A. Bacciotti and L. Rosier, Lyapunov and Lagrange stability: Inverse theorems for discontinuous systems. Math. Control Signals Systems 11 (1998) 101-128. [CrossRef] [MathSciNet] [Google Scholar]
- E.A. Barbashin and N.N. Krasovskii, On the existence of a function of Lyapunov in the case of asymptotic stability in the large. Prikl. Mat. Mekh. 18 (1954) 345-350. [Google Scholar]
- F.H. Clarke, Y.S. Ledyaev and R.J. Stern, Asymptotic stability and smooth Lyapunov functions. J. Differential Equations 149 (1998) 69-114. [CrossRef] [MathSciNet] [Google Scholar]
- F.H. Clarke, Y.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer (1998). [Google Scholar]
- F.H. Clarke, R.J. Stern and P.R. Wolenski, Subgradient criteria for monotonicity, the Lipschitz condition, and convexity. Canad. J. Math. 45 (1993) 1167-1183. [CrossRef] [MathSciNet] [Google Scholar]
- W.P. Dayanwansa and C.F. Martin, A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE Trans. Automat. Control 44 (1999) 751-764. [CrossRef] [MathSciNet] [Google Scholar]
- K. Deimling, Multivalued Differential Equations. Walter de Gruyter, Berlin (1992). [Google Scholar]
- A.F. Filippov, On certain questions in the theory of optimal control. SIAM J. Control 1 (1962) 76-84. [Google Scholar]
- A.F. Filippov, Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers (1988). [Google Scholar]
- W. Hahn, Stability of Motion. Springer-Verlag (1967). [Google Scholar]
- F.C. Hoppensteadt, Singular perturbations on the infinite interval. Trans. Amer. Math. Soc. 123 (1966) 521-535. [CrossRef] [MathSciNet] [Google Scholar]
- J. Kurzweil, On the inversion of Ljapunov's second theorem on stability of motion. Amer. Math. Soc. Trans. Ser. 2 24 (1956) 19-77. [Google Scholar]
- V. Lakshmikantham, S. Leela and A.A. Martynyuk, Stability Analysis of Nonlinear Systems. Marcel Dekker, Inc. (1989). [Google Scholar]
- V. Lakshmikantham and L. Salvadori, On Massera type converse theorem in terms of two different measures. Bull. U.M.I. 13 (1976) 293-301. [Google Scholar]
- Y. Lin, E.D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability. SIAM J. Control Optim. 34 (1996) 124-160. [CrossRef] [MathSciNet] [Google Scholar]
- A.M. Lyapunov, The general problem of the stability of motion. Math. Soc. of Kharkov, 1892 (Russian). [English Translation: Internat. J. Control 55 (1992) 531-773]. [Google Scholar]
- I.G. Malkin, On the question of the reciprocal of Lyapunov's theorem on asymptotic stability. Prikl. Mat. Mekh. 18 (1954) 129-138. [Google Scholar]
- J.L. Massera, On Liapounoff's conditions of stability. Ann. of Math. 50 (1949) 705-721. [CrossRef] [MathSciNet] [Google Scholar]
- J.L. Massera, Contributions to stability theory. Ann. of Math. 64 (1956) 182-206. (Erratum: Ann. of Math. 68 (1958) 202.) [CrossRef] [MathSciNet] [Google Scholar]
- A.M. Meilakhs, Design of stable control systems subject to parametric perturbations. Avtomat. i Telemekh. 10 (1978) 5-16. [Google Scholar]
- A.P. Molchanov and E.S. Pyatnitskii, Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems I. Avtomat. i Telemekh. (1986) 63-73. [Google Scholar]
- A.P. Molchanov and E.S. Pyatnitskiin, Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems II. Avtomat. i Telemekh. (1986) 5-14. [Google Scholar]
- A.P. Molchanov and E.S. Pyatnitskii, Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Systems Control Lett. 13 (1989) 59-64. [CrossRef] [MathSciNet] [Google Scholar]
- A.A. Movchan, Stability of processes with respect to two measures. Prikl. Mat. Mekh. (1960) 988-1001. [Google Scholar]
- I.P. Natanson, Theory of Functions of a Real Variable. Vol. 1. Frederick Ungar Publishing Co. (1974). [Google Scholar]
- E.P. Ryan, Discontinuous feedback and universal adaptive stabilization, in Control of Uncertain Systems, edited by D. Hinrichsen and B. Martensson. Birkhauser, Boston (1990) 245-258. [Google Scholar]
- E.D. Sontag, Comments on integral variants of ISS. Systems Control Lett. 34 (1998) 93-100. [CrossRef] [MathSciNet] [Google Scholar]
- E.D. Sontag and Y. Wang, A notion of input to output stability, in Proc. European Control Conf. Brussels (1997), Paper WE-E A2, CD-ROM file ECC958.pdf. [Google Scholar]
- E.D. Sontag and Y. Wang, Notions of input to output stability. Systems Control Lett. 38 (1999) 235-248. [CrossRef] [MathSciNet] [Google Scholar]
- E.D. Sontag and Y. Wang, Lyapunov characterizations of input to output stability. SIAM J. Control Optim. (to appear). [Google Scholar]
- A.M. Stuart and A.R. Humphries, Dynamical Systems and Numerical Analysis. Cambridge University Press, New York (1996). [Google Scholar]
- A.R. Teel and L. Praly, Tools for semiglobal stabilization by partial state and output feedback. SIAM J. Control Optim. 33 (1995) 1443-1488. [CrossRef] [MathSciNet] [Google Scholar]
- J. Tsinias, A Lyapunov description of stability in control systems. Nonlinear Anal. 13 (1989) 63-74. [CrossRef] [MathSciNet] [Google Scholar]
- J. Tsinias and N. Kalouptsidis, Prolongations and stability analysis via Lyapunov functions of dynamical polysystems. Math. Systems Theory 20 (1987) 215-233. [CrossRef] [MathSciNet] [Google Scholar]
- J. Tsinias, N. Kalouptsidis and A. Bacciotti, Lyapunov functions and stability of dynamical polysystems. Math. Systems Theory 19 (1987) 333-354. [CrossRef] [MathSciNet] [Google Scholar]
- V.I. Vorotnikov, Stability and stabilization of motion: Research approaches, results, distinctive characteristics. Avtomat. i Telemekh. (1993) 3-62. [Google Scholar]
- F.W. Wilson, Smoothing derivatives of functions and applications. Trans. Amer. Math. Soc. 139 (1969) 413-428. [CrossRef] [MathSciNet] [Google Scholar]
- T. Yoshizawa, Stability Theory by Lyapunov's Second Method. The Mathematical Society of Japan (1966). [Google Scholar]
- K. Yosida, Functional Analysis, 2nd Edition. Springer Verlag, New York (1968). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.