Free Access
Issue
ESAIM: COCV
Volume 5, 2000
Page(s) 425 - 444
DOI https://doi.org/10.1051/cocv:2000116
Published online 15 August 2002
  1. F. Abergel and R. Temam, On some control problems in fluid mechanics. Theoret. Computational Fluid Dynamics 1 (1990) 303-326. [Google Scholar]
  2. R. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
  3. V. Alekseev, V. Tikhomirov and S. Fomin, Optimal Control. Consultants Bureau, New York (1987). [Google Scholar]
  4. I. Babuska, The finite element method with Lagrangian multipliers. Numer. Math. 16 (1973) 179-192. [CrossRef] [Google Scholar]
  5. D.M. Bedivan and G.J. Fix, An extension theorem for the space Hdiv. Appl. Math. Lett. (to appear). [Google Scholar]
  6. N. Di Cesare, O. Pironneau and E. Polak, Consistent approximations for an optimal design problem. Report 98005 Labotatoire d'analyse numérique, Paris, France (1998). [Google Scholar]
  7. P. Ciarlet, Introduction to Numerical Linear Algebra and Optimization. Cambridge University, Cambridge (1989). [Google Scholar]
  8. P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). [Google Scholar]
  9. J.E. Dennis and R.B. Schnabel, Numerical methods for unconstrained optimisation and non-linear equations. Prentice-Hall Inc., New Jersey (1983). [Google Scholar]
  10. V. Girault and P. Raviart, The Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, New York (1986). [Google Scholar]
  11. M. Gunzburger and S. Manservisi, Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control. SIAM J. Numer. Anal. (to appear). [Google Scholar]
  12. M. Gunzburger and S. Manservisi, The velocity tracking problem for for Navier-Stokes flows with bounded distributed control. SIAM J. Control Optim. (to appear). [Google Scholar]
  13. J. Haslinger and P. Neittaanmäki, Finite Element Approximation for Optimal Shape Design. Wiley, Chichester (1988). [Google Scholar]
  14. K. Heusermann and S. Manservisi, Optimal design for heat radiative transfer systems. Comput. Methods Appl. Mech. Engrg. (to appear). [Google Scholar]
  15. F.P. Incropera and D.P. DeWitt, Fundamentals of Heat and Mass Transfer. Wiley, New York (1990). [Google Scholar]
  16. M. Modest, Radiative heat transfer. McGraw-Hill, New York (1993). [Google Scholar]
  17. O. Pironneau, Optimal shape design in fluid mechanics. Thesis, University of Paris (1976). [Google Scholar]
  18. O. Pironneau, On optimal design in fluid mechanics. J. Fluid. Mech. 64 (1974) 97-110. [Google Scholar]
  19. O. Pironneau, Optimal shape design for elliptic systems. Springer, Berlin (1984). [Google Scholar]
  20. R.E. Showalter, Hilbert Space Methods for Partial Differential Equations. Electron. J. Differential Equations (1994) http://ejde.math.swt.edu/mono-toc.html [Google Scholar]
  21. J. Sokolowski and J. Zolesio, Introduction to shape optimisation: Shape sensitivity analysis. Springer, Berlin (1992). [Google Scholar]
  22. T. Tiihonen, Stefan-Boltzmann radiation on Non-convex Surfaces. Math. Methods Appl. Sci. 20 (1997) 47-57. [CrossRef] [MathSciNet] [Google Scholar]
  23. T. Tiihonen, Finite Element Approximations for a Heat Radiation Problem. Report 7/1995, Dept. of Mathematics, University of Jyväskylä (1995). [Google Scholar]
  24. V. Tikhomirov, Fundamental Principles of the Theory of Extremal Problems. Wiley, Chichester (1986). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.