Free Access
Issue
ESAIM: COCV
Volume 5, 2000
Page(s) 539 - 577
DOI https://doi.org/10.1051/cocv:2000121
Published online 15 August 2002
  1. E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984) 125 -145. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Amar and V. De Cicco, Relaxation of quasi-convex integrals of arbitrary order. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 927-946. [MathSciNet] [Google Scholar]
  3. L. Ambrosio, S. Mortola and V.M. Tortorelli, Functionals with linear growth defined on vector valued BV functions. J. Math. Pures Appl. 70 (1991) 269-323. [MathSciNet] [Google Scholar]
  4. E.J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory. SIAM J. Control Optim. 22 (1984) 570-598. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.M. Ball, A version of the fundamental theorem for Young measures, in PDE's and Continuum Models of Phase Transitions, edited by M. Rascle, D. Serre and M. Slemrod. Springer-Verlag, Berlin, Lecture Notes in Phys. 344 (1989) 207-215. [CrossRef] [Google Scholar]
  6. J.M. Ball and F. Murat, Remarks on Chacon's biting lemma. Proc. Amer. Math. Soc. 107 (1989) 655-663. [MathSciNet] [Google Scholar]
  7. H. Berliocchi and J.M. Lasry, Intégrands normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 (1973) 129-184. [MathSciNet] [Google Scholar]
  8. A. Braides, A homogenization theorem for weakly almost periodic functionals, Rend. Accad. Naz. Sci. XL Mem. Sci. Fis. Natur. (5) 104 (1986) 261-281. [Google Scholar]
  9. A. Braides, Relaxation of functionals with constraints on the divergence. Ann. Univ. Ferrara Ser. VII (N.S.) 33 (1987) 157-177. [Google Scholar]
  10. A. Braides and A. Defranceschi, Homogenization of Multiple Integrals. Clarendon Press, Oxford (1998). [Google Scholar]
  11. A. Braides, A. Defranceschi and E. Vitali, Homogenization of free-discontinuity problems. Arch. Rational Mech. Anal. 135 (1996) 297-356. [CrossRef] [MathSciNet] [Google Scholar]
  12. G. Buttazzo, Semicontinuity, relaxation and integral representation problems in the Calculus of Variations. Longman, Harlow, Pitman Res. Notes Math. Ser. 207 (1989). [Google Scholar]
  13. B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin (1989). [Google Scholar]
  14. B. Dacorogna, Weak Continuity and Weak Lower Semicontinuity for Nonlinear Functionals. Springer-Verlag, Berlin, Lecture Notes in Math. 922 (1982). [Google Scholar]
  15. G. Dal Maso, An Introduction to Γ-Convergence. Birkhäuser, Boston (1993). [Google Scholar]
  16. G. Dal Maso, A. Defranceschi and E. Vitali (private communication). [Google Scholar]
  17. A. De Simone, Energy minimizers for large ferromagnetic bodies. Arch. Rational Mech. Anal. 125 (1993) 99-143. [CrossRef] [MathSciNet] [Google Scholar]
  18. I. Fonseca, The lower quasiconvex envelope of the stored energy function for an elastic crystal. J. Math. Pures Appl. 67 (1988) 175-195. [MathSciNet] [Google Scholar]
  19. I. Fonseca, G. Leoni, J. Malý and R. Paroni (in preparation). [Google Scholar]
  20. I. Fonseca and S. Müller, Quasiconvex integrands and lower semicontinuity in L1. SIAM J. Math. Anal. 23 (1992) 1081-1098. [CrossRef] [MathSciNet] [Google Scholar]
  21. I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in Formula for integrands Formula . Arch. Rational Mech. Anal. 123 (1993) 1-49. [CrossRef] [MathSciNet] [Google Scholar]
  22. I. Fonseca and S. Müller, A-quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal. 30 (1999) 1355-1390. [CrossRef] [MathSciNet] [Google Scholar]
  23. N. Fusco, Quasi-convessitá e semicontinuitá per integrali di ordine superiore. Ricerche Mat. 29 (1980) 307-323. [MathSciNet] [Google Scholar]
  24. M. Giaquinta and G. Modica, Regularity results for some classes of higher order non linear elliptic systems. J. reine angew. Math. 311/312 (1979) 145-169. [Google Scholar]
  25. M. Guidorzi and L. Poggiolini, Lower semicontinuity for quasiconvex integrals of higher order. NoDEA Nonlinear Differential Equations Appl. 6 (1999) 227-246. [Google Scholar]
  26. J. Kristensen, Finite functionals and Young measures generated by gradients of Sobolev functions. Mathematical Institute, Technical University of Denmark, Mat-Report No. 1994-34 (1994). [Google Scholar]
  27. P. Marcellini, Approximation of quasiconvex functions and semicontinuity of multiple integrals. Manuscripta Math. 51 (1985) 1-28. [CrossRef] [MathSciNet] [Google Scholar]
  28. P. Marcellini and C. Sbordone, Semicontinuity problems in the Calculus of Variations. Nonlinear Anal. 4 (1980) 241-257. [CrossRef] [MathSciNet] [Google Scholar]
  29. N.G. Meyers, Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Amer. Math. Soc. 119 (1965) 125-149. [CrossRef] [MathSciNet] [Google Scholar]
  30. C.B. Morrey, Multiple Integrals in the calculus of Variations. Springer-Verlag, Berlin (1966). [Google Scholar]
  31. S. Müller, Variational models for microstructures and phase transitions, in Calculus of Variations and Geometric Evolution Problems, edited by S. Hildebrant et al. Springer-Verlag, Berlin, Lecture Notes in Math. 1713 (1999) 85-210. [CrossRef] [Google Scholar]
  32. F. Murat, Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sw. (4) 8 (1981) 68-102. [Google Scholar]
  33. P. Pedregal, Parametrized Measures and Variational Principles. Birkhäuser, Boston (1997). [Google Scholar]
  34. L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, edited by R. Knops. Longman, Harlow, Pitman Res. Notes Math. Ser. 39 (1979) 136-212. [Google Scholar]
  35. L. Tartar, The compensated compactness method applied to systems of conservation laws, in Systems of Nonlinear Partial Differential Eq., edited by J.M. Ball. Riedel (1983). [Google Scholar]
  36. L. Tartar, Étude des oscillations dans les équations aux dérivées partielles nonlinéaires. Springer-Verlag, Berlin, Lectures Notes in Phys. 195 (1984) 384-412. [CrossRef] [Google Scholar]
  37. L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 193-230. [CrossRef] [MathSciNet] [Google Scholar]
  38. L. Tartar, On mathematical tools for studying partial differential equations of continuum physics: H-measures and Young measures, in Developments in Partial Differential Equations and Applications to Mathematical Physics, edited by Buttazzo, Galdi and Zanghirati. Plenum, New York (1991). [Google Scholar]
  39. L. Tartar, Some remarks on separately convex functions, in Microstructure and Phase Transitions, edited by D. Kinderlehrer, R.D. James, M. Luskin and J.L. Ericksen. Springer-Verlag, IMA J. Math. Appl. 54 (1993) 191-204. [Google Scholar]
  40. L.C. Young, Lectures on Calculus of Variations and Optimal Control Theory. W.B. Saunders (1969). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.