Free Access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 467 - 488
DOI https://doi.org/10.1051/cocv:2001118
Published online 15 August 2002
  1. R.A. Adams, Sobolev spaces. Academic Press, New-York (1975). [Google Scholar]
  2. H. Amann, Dual semigroups and second order linear elliptic boundary value problems. Israel J. Math. 45 (1983) 225-254. [CrossRef] [MathSciNet] [Google Scholar]
  3. S. Anita, Optimal control of parameter distributed systems with impulses. Appl. Math. Optim. 29 (1994) 93-107. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Berggren, R. Glowinski and J.L. Lions, A Computational Approach to Controllability Issues for Flow-Related Models, Part 1. Int. J. Comput. Fluid Dyn. 7 (1996) 237-252. [CrossRef] [Google Scholar]
  5. M. Berggren, R. Glowinski and J.L. Lions, A Computational Approach to Controllability Issues for Flow-Related Models, Part 2. Int. J. Comput. Fluid Dyn. 6 (1996) 253-247. [CrossRef] [Google Scholar]
  6. E. Casas, J.-P. Raymond and H. Zidani, Pontryagin's principle for local solutions of control problems with mixed control-state constraints. SIAM J. Control Optim. 39 (2000) 1182-1203. [CrossRef] [MathSciNet] [Google Scholar]
  7. E. Casas, M. Mateos and J.-P. Raymond, Pontryagin's principle for the control of parabolic equations with gradient state constraints. Nonlinear Anal. (to appear). [Google Scholar]
  8. E.J. Dean and P. Gubernatis, Pointwise Control of Burgers' Equation - A Numerical Approach. Comput. Math. Appl. 22 (1991) 93-100. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  9. Z. Ding, L. Ji and J. Zhou, Constrained LQR Problems in Elliptic distributed Control systems with Point observations. SIAM 34 (1996) 264-294. [Google Scholar]
  10. J. Droniou and J.-P. Raymond, Optimal pointwise control of semilinear parabolic equations. Nonlinear Anal. 39 (2000) 135-156. [CrossRef] [MathSciNet] [Google Scholar]
  11. J.W. He and R. Glowinski, Neumann control of unstable parabolic systems: Numerical approach. J. Optim. Theory Appl. 96 (1998) 1-55. [CrossRef] [MathSciNet] [Google Scholar]
  12. J.W. He, R. Glowinski, R. Metacalfe and J. Periaux, A numerical approach to the control and stabilization of advection-diffusion systems: Application to viscous drag reduction, Flow control and optimization. Int. J. Comput. Fluid Dyn. 11 (1998) 131-156. [CrossRef] [MathSciNet] [Google Scholar]
  13. H. Henrot and J. Sokolowski, Shape Optimization Problem for Heat Equation. Rapport de recherche INRIA (1997). [Google Scholar]
  14. D. Henry, Geometric Theory of Semilinear Parabolic Equations. Springer-Verlag, Berlin/Heidelberg/New-York (1981). [Google Scholar]
  15. K.-H. Hoffmann and J. Sokolowski, Interface optimization problems for parabolic equations. Control Cybernet. 23 (1994) 445-451. [MathSciNet] [Google Scholar]
  16. J.-P. Kernevez, The sentinel method and its application to environmental pollution problems. CRC Press, Boca Raton (1997). [Google Scholar]
  17. J.-L. Lions, Pointwise control for distributed systems, in Control and estimation in distributed parameters sytems, edited by H.T. Banks. SIAM, Philadelphia (1992) 1-39. [Google Scholar]
  18. O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural'ceva, Linear and quasilinear equations of parabolic type. AMS, Providence, RI, Transl. Math. Monographs 23 (1968). [Google Scholar]
  19. H.-C. Lee and O.Yu. Imanuvilov, Analysis of Neumann boundary optimal control problems for the stationary Boussinesq equations including solid media. SIAM J. Control Optim. 39 (2000) 457-477. [CrossRef] [MathSciNet] [Google Scholar]
  20. P.A. Nguyen, Optimal Control Localized on Thin Structure for Semilinear Parabolic Equations and the Boussinesq system. Thesis, Toulouse (2000). [Google Scholar]
  21. P.A. Nguyen and J.-P. Raymond, Control Localized On Thin Structure For Semilinear Parabolic Equations. Sém. Inst. H. Poincaré (to appear). [Google Scholar]
  22. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, Berlin/Heidelberg/New-York (1983). [Google Scholar]
  23. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Tome 2, Fourier Analysis, Self-Adjointness. Academic Press, Inc. (1975). [Google Scholar]
  24. J.-P. Raymond and H. Zidani, Hamiltonian Pontryagin's principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 39 (1999) 143-177. [CrossRef] [MathSciNet] [Google Scholar]
  25. J. Simon, Compact Sets in the Space Lp(0,T;B). Ann. Mat. Pura Appl. 196 (1987) 65-96. [Google Scholar]
  26. H. Triebel, Interpolation Theory, Functions Spaces, Differential Operators. North Holland Publishing Campany, Amsterdam/New-York/Oxford (1977). [Google Scholar]
  27. V. Vespri, Analytic Semigroups Generated in H-m,p by Elliptic Variational Operators and Applications to Linear Cauchy Problems, Semigroup theory and applications, edited by Clemens et al. Marcel Dekker, New-York (1989) 419-431. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.