Free Access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 467 - 488
DOI https://doi.org/10.1051/cocv:2001118
Published online 15 August 2002
  1. R.A. Adams, Sobolev spaces. Academic Press, New-York (1975).
  2. H. Amann, Dual semigroups and second order linear elliptic boundary value problems. Israel J. Math. 45 (1983) 225-254. [CrossRef] [MathSciNet]
  3. S. Anita, Optimal control of parameter distributed systems with impulses. Appl. Math. Optim. 29 (1994) 93-107. [CrossRef] [MathSciNet]
  4. M. Berggren, R. Glowinski and J.L. Lions, A Computational Approach to Controllability Issues for Flow-Related Models, Part 1. Int. J. Comput. Fluid Dyn. 7 (1996) 237-252. [CrossRef]
  5. M. Berggren, R. Glowinski and J.L. Lions, A Computational Approach to Controllability Issues for Flow-Related Models, Part 2. Int. J. Comput. Fluid Dyn. 6 (1996) 253-247. [CrossRef]
  6. E. Casas, J.-P. Raymond and H. Zidani, Pontryagin's principle for local solutions of control problems with mixed control-state constraints. SIAM J. Control Optim. 39 (2000) 1182-1203. [CrossRef] [MathSciNet]
  7. E. Casas, M. Mateos and J.-P. Raymond, Pontryagin's principle for the control of parabolic equations with gradient state constraints. Nonlinear Anal. (to appear).
  8. E.J. Dean and P. Gubernatis, Pointwise Control of Burgers' Equation - A Numerical Approach. Comput. Math. Appl. 22 (1991) 93-100. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  9. Z. Ding, L. Ji and J. Zhou, Constrained LQR Problems in Elliptic distributed Control systems with Point observations. SIAM 34 (1996) 264-294.
  10. J. Droniou and J.-P. Raymond, Optimal pointwise control of semilinear parabolic equations. Nonlinear Anal. 39 (2000) 135-156. [CrossRef] [MathSciNet]
  11. J.W. He and R. Glowinski, Neumann control of unstable parabolic systems: Numerical approach. J. Optim. Theory Appl. 96 (1998) 1-55. [CrossRef] [MathSciNet]
  12. J.W. He, R. Glowinski, R. Metacalfe and J. Periaux, A numerical approach to the control and stabilization of advection-diffusion systems: Application to viscous drag reduction, Flow control and optimization. Int. J. Comput. Fluid Dyn. 11 (1998) 131-156. [CrossRef] [MathSciNet]
  13. H. Henrot and J. Sokolowski, Shape Optimization Problem for Heat Equation. Rapport de recherche INRIA (1997).
  14. D. Henry, Geometric Theory of Semilinear Parabolic Equations. Springer-Verlag, Berlin/Heidelberg/New-York (1981).
  15. K.-H. Hoffmann and J. Sokolowski, Interface optimization problems for parabolic equations. Control Cybernet. 23 (1994) 445-451. [MathSciNet]
  16. J.-P. Kernevez, The sentinel method and its application to environmental pollution problems. CRC Press, Boca Raton (1997).
  17. J.-L. Lions, Pointwise control for distributed systems, in Control and estimation in distributed parameters sytems, edited by H.T. Banks. SIAM, Philadelphia (1992) 1-39.
  18. O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural'ceva, Linear and quasilinear equations of parabolic type. AMS, Providence, RI, Transl. Math. Monographs 23 (1968).
  19. H.-C. Lee and O.Yu. Imanuvilov, Analysis of Neumann boundary optimal control problems for the stationary Boussinesq equations including solid media. SIAM J. Control Optim. 39 (2000) 457-477. [CrossRef] [MathSciNet]
  20. P.A. Nguyen, Optimal Control Localized on Thin Structure for Semilinear Parabolic Equations and the Boussinesq system. Thesis, Toulouse (2000).
  21. P.A. Nguyen and J.-P. Raymond, Control Localized On Thin Structure For Semilinear Parabolic Equations. Sém. Inst. H. Poincaré (to appear).
  22. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, Berlin/Heidelberg/New-York (1983).
  23. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Tome 2, Fourier Analysis, Self-Adjointness. Academic Press, Inc. (1975).
  24. J.-P. Raymond and H. Zidani, Hamiltonian Pontryagin's principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 39 (1999) 143-177. [CrossRef] [MathSciNet]
  25. J. Simon, Compact Sets in the Space Lp(0,T;B). Ann. Mat. Pura Appl. 196 (1987) 65-96.
  26. H. Triebel, Interpolation Theory, Functions Spaces, Differential Operators. North Holland Publishing Campany, Amsterdam/New-York/Oxford (1977).
  27. V. Vespri, Analytic Semigroups Generated in H-m,p by Elliptic Variational Operators and Applications to Linear Cauchy Problems, Semigroup theory and applications, edited by Clemens et al. Marcel Dekker, New-York (1989) 419-431.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.