Free Access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 39 - 72
DOI https://doi.org/10.1051/cocv:2001103
Published online 15 August 2002
  1. V.M. Alekseev, V.M. Tikhomirov and S.V. Fomin, Optimal control. Consultants Bureau, New York (1987). [Google Scholar]
  2. D. Chae, O.Yu. Imanuvilov and S.M. Kim, Exact controllability for semilinear parabolic equations with Neumann boundary conditions. J. Dynam. Control Systems 2 (1996) 449-483. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.-M. Coron, On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier-Slip boundary conditions. ESAIM: COCV 1 (1996) 35-75. [CrossRef] [EDP Sciences] [Google Scholar]
  4. J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155-188. [MathSciNet] [Google Scholar]
  5. J.-M. Coron, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris Sér. I Math. 317 (1993) 271-276. [Google Scholar]
  6. J.-M. Coron and A.V. Fursikov, Global exact controllability of the 2-D Navier-Stokes equations on manifold without boundary. Russian J. Math. Phys. 4 (1996) 1-20. [Google Scholar]
  7. C. Fabre, Résultats d'unicité pour les équations de Stokes et applications au contrôle. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 1191-1196. [Google Scholar]
  8. C. Fabre and G. Lebeau, Prolongement unique des solutions de l'équation de Stokes. Comm. Partial Differential Equations 21 (1996) 573-596. [CrossRef] [MathSciNet] [Google Scholar]
  9. A.V. Fursikov and O.Yu. Imanuvilov, Local exact controllability of two dimensional Navier-Stokes system with control on the part of the boundary. Sb. Math. 187 (1996) 1355-1390. [CrossRef] [MathSciNet] [Google Scholar]
  10. A.V. Fursikov and O.Yu. Imanuvilov, Local exact boundary controllability of the Boussinesq equation. SIAM J. Control Optim. 36 (1988) 391-421. [CrossRef] [MathSciNet] [Google Scholar]
  11. A.V. Fursikov and O.Yu. Imanuvilov, Local exact controllability of the Navier-Stokes Equations. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 275-280. [Google Scholar]
  12. A.V. Fursikov and O.Yu. Imanuvilov, Controllability of evolution equations, Lecture notes series (1996), no. 34 SNU, Seoul. [Google Scholar]
  13. A.V. Fursikov and O.Yu. Imanuvilov, On approximate controllability of the Stokes system. Ann. Fac. Sci. Toulouse 11 (1993) 205-232. [Google Scholar]
  14. A.V. Fursikov and O.Yu. Imanuvilov, Exact controllability of the Navier-Stokes equations and the Boussinesq system. Russian Math. Surveys 54 (1999) 565-618. [CrossRef] [MathSciNet] [Google Scholar]
  15. O. Glass, Contrôlabilité de l'équation d'Euler tridimensionnelle pour les fluides parfaits incompressibles, Séminaire sur les Équations aux Dérivées Partielles, 1997-1998, Exp No XV. École Polytechnique, Palaiseau (1998) 11. [Google Scholar]
  16. O. Glass, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles en dimension 3. C. R. Acad. Sci. Paris Sér. I Math. (1997) 987-992. [Google Scholar]
  17. L. Hörmander, Linear partial differential operators. Springer-Verlag, Berlin (1963). [Google Scholar]
  18. T. Horsin, On the controllability of the Burgers equations. ESAIM: COCV 3 (1998) 83-95. [CrossRef] [EDP Sciences] [Google Scholar]
  19. O.Yu. Imanuvilov, On exact controllability for the Navier-Stokes equations. ESAIM: COCV 3 (1998) 97-131. [CrossRef] [EDP Sciences] [Google Scholar]
  20. O.Yu. Imanuvilov, Boundary controllability of parabolic equations. Sb. Math. 186 (1995) 879-900. [CrossRef] [MathSciNet] [Google Scholar]
  21. O.Yu. Imanuvilov, Local exact controllability for the 2-D Navier-Stokes equations with the Navier slip boundary conditions. Lecture Notes in Phys. 491 (1977) 148-168. [CrossRef] [Google Scholar]
  22. O.Yu. Imanuvilov and M. Yamamoto, On Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, UTMS 98-46. [Google Scholar]
  23. A.N. Kolmogorov and S.V. Fomin, Introductory real analysis. Dover Publications, INC, New York (1996). [Google Scholar]
  24. O.A. Ladyzenskaja and N.N. Ural'ceva, Linear and quasilinear equations of elliptic type. Academic Press, New York (1968). [Google Scholar]
  25. J.L. Lions, Contrôle des systèmes distribués singuliers. Gauthier-Villars, Paris (1983). [Google Scholar]
  26. J.L. Lions, Optimal control of systems governed by partial differential equations. Springer-Verlag (1971). [Google Scholar]
  27. J.-L. Lions, Are there connections between turbulence and controllability?, in 9e Conférence internationale de l'INRIA. Antibes (1990). [Google Scholar]
  28. J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems. Springer-Verlag, Berlin (1971). [Google Scholar]
  29. M. Taylor, Pseudodifferential operators. Princeton Univ. Press (1981). [Google Scholar]
  30. M. Taylor, Pseudodifferential operators and Nonlinear PDE. Birkhäuser (1991). [Google Scholar]
  31. R. Temam, Navier-Stokes equations. North-Holland Publishing Company, Amsterdam (1979). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.