Free Access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 183 - 199
DOI https://doi.org/10.1051/cocv:2001107
Published online 15 August 2002
  1. C. Castro and E. Zuazua, Boundary controllability of a hybrid system consisting in two flexible beams connected by a point mass. SIAM J. Control Optim. 36 (1998) 1576-1595. [Google Scholar]
  2. S. Hanssen and E. Zuazua, Exact controllability and stabilization of a vibration string with an interior point mass. SIAM J. Control Optim. 33 (1995) 1357-1391. [CrossRef] [MathSciNet] [Google Scholar]
  3. W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity. Arch. Rational Mech. Anal. 103 (1988) 193-236. [MathSciNet] [Google Scholar]
  4. W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping. Ann. Mat. Pura Appl. 152 (1988) 281-330. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Vol. I. Masson, Paris (1988). [Google Scholar]
  6. J.L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems. SIAM Rev. 30 (1988) 1-68. [Google Scholar]
  7. L. Markus and Y.C. You, Dynamical boundary control for elastic Al plates of general shape. SIAM J. Control Optim. 31 (1993) 983-992. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Micu and E. Zuazua, Boundary controllability of a linear hybrid system arising in the control noise. SIAM J. Control Optim. 35 (1987) 1614-1637. [Google Scholar]
  9. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York (1983). [Google Scholar]
  10. B. Rao, Stabilisation du modèle SCOLE par un contrôle frontière a priori borné. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 1061-1066. [Google Scholar]
  11. B. Rao, Uniform stabilization and exact controllability of Kirchhoff plates with dynamical boundary controls. [Google Scholar]
  12. B. Rao, Uniform stabilization of a hybrid system of elasticity. SIAM J. Control Optim. 33 (1995) 440-454. [CrossRef] [MathSciNet] [Google Scholar]
  13. B. Rao, Contrôlabilité exacte frontière d'un système hybride en élasticité par la méthode HUM. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 889-894. [Google Scholar]
  14. J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. (IV) CXLVI (1987) 65-96. [Google Scholar]
  15. M. Slemrod, Feedback stabilization of a linear system in Hilbert space with an a priori bounded control. Math. Control Signals Systems (1989) 265-285. [Google Scholar]
  16. E. Zuazua, Contrôlabilité exacte en un temps arbitrairement petit de quelques modèles de plaques, in Lions [5], 465-491. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.