Free Access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 239 - 258
DOI https://doi.org/10.1051/cocv:2001109
Published online 15 August 2002
  1. B. Bonnard and J. de Morant, Towards a geometric theory in the time minimal control of chemical batch reactors. SIAM J. Control Optim. 33 (1995) 1279-1311. [CrossRef] [MathSciNet] [Google Scholar]
  2. B. Bonnard and G. Launay, Time minimal control of batch reactors. ESAIM: COCV 3 (1998) 407-467. [CrossRef] [EDP Sciences] [Google Scholar]
  3. J.B. Caillau, Contribution à l'étude du contren temps minimal des transferts orbitaux. Ph.D. Thesis, ENSEEIHT, Institut National Polytechnique de Toulouse, France (2000). [Google Scholar]
  4. J.B. Caillau and J. Noailles, Continuous optimal control sensitivity analysis with AD, in Proc. of the 3rd International Conference on Automatic Differentiation. INRIA Nice, France (2000). [Google Scholar]
  5. J.B. Caillau and J. Noailles, Sensitivity analysis for time optimal orbit transfer. Optimization 49 (2001) 327-350. [CrossRef] [MathSciNet] [Google Scholar]
  6. L. Cesari, Optimization Theory and Applications. Springer-Verlag (1983). [Google Scholar]
  7. C. Ferrier and R. Epenoy, Optimal control for engines with electro-ionic propulsion under constraint of eclipse. Acta Astronautica (to appear). [Google Scholar]
  8. M. Fliess, Variations sur la notion de contré, in Quelques aspects de la théorie du contr. Journée Annuelle de la Société Mathématique de France (2000). [Google Scholar]
  9. S. Geffroy, R. Epenoy and J. Noailles, Averaging techniques in optimal control for orbital low-thrust transfers and rendez-vous computation, in 11th International Astrodynamics Symposium. Gifu, Japan (1996) 166-171. [Google Scholar]
  10. M. Godbillon, Géométrie différentielle et mécanique analytique. Hermann, Paris (1985). [Google Scholar]
  11. V. Jurdjevic, Geometric control theory. Cambridge University Press (1997). [Google Scholar]
  12. K. Malanowski, Sufficient optimality conditions for optimal control subject to state constraints. SIAM J. Control Optim. 35 (1997) 205-227. [CrossRef] [MathSciNet] [Google Scholar]
  13. K. Malanowski and H. Maurer, Sensitivity analysis for parametric optimal control problems with control-state constraints. Comp. Optim. Appl. 5 (1996) 253-283. [Google Scholar]
  14. J. Noailles and J. Gergaud, A new method for the time optimal control problem and its application to low thrust orbital transfer. Workshop on low thrust transfers, Toulouse, France, French Space Agency, CNES (2000). [Google Scholar]
  15. J. Noailles and T.C. Le, Contren temps minimal et transfert orbital à faible poussée. Équations aux dérivées partielles et applications, articles in honour of J.L. Lions for his 70th birthday. Gauthier-Villars (1998) 705-724. [Google Scholar]
  16. H.J. Sussmann, Geometry and Optimal Control, in Mathematical Control Theory, Dedicated to Roger W. Brockett on his 60th birthday, edited by J. Baillieul and J.C. Willems. Springer-Verlag (1998). [Google Scholar]
  17. H.J. Sussmann, Résultats récents sur les courbes optimales, in Quelques aspects de la théorie du contr. Journée Annuelle de la Société Mathématique de France (2000). [Google Scholar]
  18. O. Zarrouati, Trajectoires spatiales. CNES-Cepadues, Toulouse, France (1987). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.