Free Access
Issue
ESAIM: COCV
Volume 7, 2002
Page(s) 269 - 283
DOI https://doi.org/10.1051/cocv:2002011
Published online 15 September 2002
  1. S. Anita and V. Barbu, Null controllability of nonlinear convective heat equations. ESAIM: COCV 5 (2000) 157-173. [CrossRef] [EDP Sciences] [Google Scholar]
  2. A. Baciotti, Local Stabilizability of Nonlinear Control Systems. World Scientific, Singapore, Series on Advances in Mathematics and Applied Sciences 8 (1992). [Google Scholar]
  3. J.M. Ball and M. Slemrod, Feedback stabilization of semilinear control systems. Appl. Math. Opt. 5 (1979) 169-179. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.M. Ball and M. Slemrod, Nonharmonic Fourier series and the stabilization of distributed semi-linear control systems. Comm. Pure. Appl. Math. 32 (1979) 555-587. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.M. Ball, J.E. Mardsen and M. Slemrod, Controllability for distributed bilinear systems. SIAM J. Control Optim. (1982) 575-597. [Google Scholar]
  6. V. Barbu, Exact controllability of the superlinear heat equation. Appl. Math. Opt. 42 (2000) 73-89. [CrossRef] [MathSciNet] [Google Scholar]
  7. M.E. Bradley, S. Lenhart and J. Yong, Bilinear optimal control of the velocity term in a Kirchhoff plate equation. J. Math. Anal. Appl. 238 (1999) 451-467. [CrossRef] [MathSciNet] [Google Scholar]
  8. E. Fernández-Cara, Null controllability of the semilinear heat equation. ESAIM: COCV 2 (1997) 87-103. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  9. E. Fernández-Cara and E. Zuazua, Controllability for blowing up semilinear parabolic equations. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 199-204. [Google Scholar]
  10. L.A. Fernández, Controllability of some semilnear parabolic problems with multiplicativee control, a talk presented at the Fifth SIAM Conference on Control and its applications, held in San Diego, July 11-14, 2001 (in preparation). [Google Scholar]
  11. A. Fursikov and O. Imanuvilov, Controllability of evolution equations. Res. Inst. Math., GARC, Seoul National University, Lecture Note Ser. 34 (1996). [Google Scholar]
  12. J. Henry, Étude de la contrôlabilité de certaines équations paraboliques non linéaires, Thèse d'état. Université Paris VI (1978). [Google Scholar]
  13. A.Y. Khapalov, Approximate controllability and its well-posedness for the semilinear reaction-diffusion equation with internal lumped controls. ESAIM: COCV 4 (1999) 83-98. [CrossRef] [EDP Sciences] [Google Scholar]
  14. A.Y. Khapalov, Global approximate controllability properties for the semilinear heat equation with superlinear term. Rev. Mat. Complut. 12 (1999) 511-535. [MathSciNet] [Google Scholar]
  15. A.Y. Khapalov, A class of globally controllable semilinear heat equations with superlinear terms. J. Math. Anal. Appl. 242 (2000) 271-283. [CrossRef] [MathSciNet] [Google Scholar]
  16. A.Y. Khapalov, Bilinear control for global controllability of the semilinear parabolic equations with superlinear terms, in the Special volume "Control of Nonlinear Distributed Parameter Systems'', dedicated to David Russell, Marcel Dekker, Vol. 218 (2001) 139-155. [Google Scholar]
  17. A.Y. Khapalov, On bilinear controllability of the parabolic equation with the reaction-diffusion term satisfying Newton's Law, in the special issue of the J. Comput. Appl. Math. dedicated to the memory of J.-L. Lions (to appear). [Google Scholar]
  18. A.Y. Khapalov, Controllability of the semilinear parabolic equation governed by a multiplicative control in the reaction term: A qualitative approach, Available as Tech. Rep. 01-7, Washington State University, Department of Mathematics (submitted). [Google Scholar]
  19. K. Kime, Simultaneous control of a rod equation and a simple Schrödinger equation. Systems Control Lett. 24 (1995) 301-306. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  20. O.H. Ladyzhenskaya, V.A. Solonikov and N.N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type. AMS, Providence, Rhode Island (1968). [Google Scholar]
  21. S. Lenhart, Optimal control of convective-diffusive fluid problem. Math. Models Methods Appl. Sci. 5 (1995) 225-237. [CrossRef] [MathSciNet] [Google Scholar]
  22. S. Müller, Strong convergence and arbitrarily slow decay of energy for a class of bilinear control problems. J. Differential Equations 81 (1989) 50-67. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.