Free Access
Issue
ESAIM: COCV
Volume 7, 2002
Page(s) 285 - 289
DOI https://doi.org/10.1051/cocv:2002012
Published online 15 September 2002
  1. L. Ambrosio, C. De Lellis and C. Mantegazza, Line energies for gradient vector fields in the plane. Calc. Var. Partial Differential Equations 9 (1999) 327-355. [CrossRef] [MathSciNet] [Google Scholar]
  2. P. Aviles and Y. Giga, A mathematical problem related to the physical theory of liquid crystal configurations. Proc. Centre Math. Anal. Austral. Nat. Univ. 12 (1987) 1-16. [Google Scholar]
  3. P. Aviles and Y. Giga, On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields. Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 1-17. [MathSciNet] [Google Scholar]
  4. C. De Lellis, Energie di linea per campi di gradienti, Ba. D. Thesis. University of Pisa (1999). [Google Scholar]
  5. A. De Simone, R.W. Kohn, S. Müller and F. Otto, A compactness result in the gradient theory of phase transition. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 833-844. [CrossRef] [MathSciNet] [Google Scholar]
  6. P.-E. Jabin and B. Perthame, Compactness in Ginzburg-Landau energy by kinetic averaging. Comm. Pure Appl. Math. 54 (2001) 1096-1109. [CrossRef] [MathSciNet] [Google Scholar]
  7. W. Jin, Singular perturbation and the energy of folds, Ph.D. Thesis. Courant Insitute, New York (1999). [Google Scholar]
  8. W. Jin and R.V. Kohn, Singular perturbation and the energy of folds. J. Nonlinear Sci. 10 (2000) 355-390. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Ortiz and G. Gioia, The morphology and folding patterns of buckling driven thin-film blisters. J. Mech. Phys. Solids 42 (1994) 531-559. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.