Free Access
Issue
ESAIM: COCV
Volume 7, 2002
Page(s) 597 - 614
DOI https://doi.org/10.1051/cocv:2002068
Published online 15 September 2002
  1. A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973) 349-381. [CrossRef]
  2. H. Berestycki and P.L. Lions, Nonlinear scalar field equations I. Arch. Rational Mech. Anal. 82 (1983) 313-346. [MathSciNet]
  3. H. Berestycki, T. Gallouët and O. Kavian, Equations de Champs scalaires euclidiens non linéaires dans le plan. C. R. Acad. Sci. Paris Sér. I Math. 297 (1983) 307-310.
  4. H. Brezis, Analyse fonctionnelle. Masson (1983).
  5. V. Coti Zelati and P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on Formula . Comm. Pure Appl. Math. XIV (1992) 1217-1269.
  6. I. Ekeland, Convexity methods in Hamiltonian Mechanics. Springer (1990).
  7. L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on Formula . Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 787-809. [MathSciNet]
  8. P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Parts I and II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 109-145 and 223-283.
  9. P.H. Rabinowitz, On a class of nonlinear Shrödinger equations. ZAMP 43 (1992) 270-291. [CrossRef] [MathSciNet]
  10. C.A. Stuart, Bifurcation in Formula for a semilinear elliptic equation. Proc. London Math. Soc. 57 (1988) 511-541. [CrossRef] [MathSciNet]
  11. C.A. Stuart and H.S. Zhou, A variational problem related to self-trapping of an electromagnetic field. Math. Meth. Appl. Sci. 19 (1996) 1397-1407. [CrossRef]
  12. C.A. Stuart and H.S. Zhou, Applying the mountain-pass theorem to an asymtotically linear elliptic equation on Formula . Comm. Partial Differential Equations 24 (1999) 1731-1758. [CrossRef] [MathSciNet]
  13. A. Szulkin and W. Zou, Homoclinic orbits for asymptotically linear Hamiltonian systems. J. Funct. Anal. 187 (2001) 25-41. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.