Free Access
Volume 7, 2002
Page(s) 135 - 155
Published online 15 September 2002
  1. H. Brézis, Equations et inéquations nonlinéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier (Grenoble 18 (1968) 115-175. [CrossRef] [MathSciNet] [Google Scholar]
  2. J. Haslinger and P. Neittaanmäki, Finite element approximation for optimal shape design, theory and applications. Wiley, Chichester (1988). [Google Scholar]
  3. J. Haslinger, M. Miettinen and P. Panagiotopoulos, Finite element method for hemivariational inequalities. Theory, methods and applications. Kluwer Academic Publishers (1999). [Google Scholar]
  4. A. Haraux, How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Japan 29 (1977) 615-631. [CrossRef] [MathSciNet] [Google Scholar]
  5. N. Kikuchi and J.T. Oden, Contact problems in elasticity: A study of variational inequalities and finite element methods. SIAM (1988). [Google Scholar]
  6. A.B. Levy, Sensitivity of solutions to variational inequalities on Banach Spaces. SIAM J. Control Optim. 38 (1999) 50-60. [CrossRef] [MathSciNet] [Google Scholar]
  7. A.B. Levy and R.T. Rockafeller, Sensitivity analysis of solutions to generalized equations. Trans. Amer. Math. Soc. 345 (1994) 661-671. [CrossRef] [MathSciNet] [Google Scholar]
  8. F. Mignot, Contrôle dans les inéquations variationnelles elliptiques. J. Funct. Anal. 22 (1976) 130-185. [CrossRef] [Google Scholar]
  9. M. Rao and J. Sokolowski, Sensitivity analysis of Kirchhoff plate with obstacle, Rapports de Recherche, 771. INRIA-France (1987). [Google Scholar]
  10. M. Rao and J. Sokolowski, Sensitivity analysis of unilateral problems in Formula and applications. Numer. Funct. Anal. Optim. 14 (1993) 125-143. [CrossRef] [MathSciNet] [Google Scholar]
  11. R.T. Rockafeller, Proto-differentiability of set-valued mappings and its applications in Optimization. Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989) 449-482. [Google Scholar]
  12. A. Shapiro, On concepts of directional differentiability. J. Optim. Theory Appl. 66 (1990) 477-487. [CrossRef] [MathSciNet] [Google Scholar]
  13. J. Sokolowski and J.-P. Zolesio, Shape sensitivity analysis of unilateral problems. SIAM J. Math. Anal. 18 (1987) 1416-1437. [CrossRef] [MathSciNet] [Google Scholar]
  14. J. Sokolowski and J.-P. Zolesio, Shape design sensitivity analysis of plates and plane elastic solids under unilateral constraints. J. Optim. Theory Appl. 54 (1987) 361-382. [CrossRef] [MathSciNet] [Google Scholar]
  15. J. Sokolowski and J.-P. Zolesio, Introduction to shape optimization - shape sensitivity analysis. Springer-Verlag, Springer Ser. Comput. Math. 16 (1992). [Google Scholar]
  16. P.W. Ziemer, Weakly differentiable functions. Springer-Verlag, New York (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.