Free Access
Issue
ESAIM: COCV
Volume 7, 2002
Page(s) 157 - 178
DOI https://doi.org/10.1051/cocv:2002007
Published online 15 September 2002
  1. R. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
  2. J. Baillieul and M. Levi, Rotational elastic dynamics. Physica D 27 (1987) 43-62. [CrossRef] [MathSciNet] [Google Scholar]
  3. J. Baillieul and M. Levi, Constrained relative motions in rotational mechanics. Arch. Rational Mech. Anal. 115 (1991) 101-135. [CrossRef] [MathSciNet] [Google Scholar]
  4. S.K. Biswas and N.U. Ahmed, Optimal control of large space structures governed by a coupled system of ordinary and partial differential equations. Math. Control Signals Systems 2 (1989) 1-18. [CrossRef] [MathSciNet] [Google Scholar]
  5. B. Chentouf and J.F. Couchouron, Nonlinear feedback stabilization of a rotating body-beam without damping. ESAIM: COCV 4 (1999) 515-535. [CrossRef] [EDP Sciences] [Google Scholar]
  6. J.-M. Coron and B. d'Andréa-Novel, Stabilization of a rotating body beam without damping. IEEE Trans. Automat. Control 43 (1998) 608-618. [CrossRef] [MathSciNet] [Google Scholar]
  7. C.J. Damaren and G.M.T. D'Eleuterio, Optimal control of large space structures using distributed gyricity. J. Guidance Control Dynam. 12 (1989) 723-731. [CrossRef] [MathSciNet] [Google Scholar]
  8. I. Ekeland and R. Temam, Convex Analysis and Variational Problems. North-Holland Publishing Company, Amsterdam (1976). [Google Scholar]
  9. H. Laousy, C.Z. Xu and G. Sallet, Boundary feedback stabilization of a rotating body-beam system. IEEE Trans. Automat. Control 41 (1996) 241-245. [CrossRef] [MathSciNet] [Google Scholar]
  10. J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin (1971). [Google Scholar]
  11. J.L. Lions and E. Magenes, Non-homogeneous Boundary value Problems and Applications, Vol. I. Springer-Verlag, Berlin, Heidelberg, New York (1972). [Google Scholar]
  12. A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). [Google Scholar]
  13. J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. (4) CXLVI (1987) 65-96. [Google Scholar]
  14. R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd Ed. Springer-Verlag, New York (1997). [Google Scholar]
  15. C.Z. Xu and J. Baillieul, Stabilizability and stabilization of a rotating body-beam system with torque control. IEEE Trans. Automat. Control 38 (1993) 1754-1765. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.