Free Access
Issue
ESAIM: COCV
Volume 7, 2002
Page(s) 157 - 178
DOI https://doi.org/10.1051/cocv:2002007
Published online 15 September 2002
  1. R. Adams, Sobolev Spaces. Academic Press, New York (1975).
  2. J. Baillieul and M. Levi, Rotational elastic dynamics. Physica D 27 (1987) 43-62. [CrossRef] [MathSciNet]
  3. J. Baillieul and M. Levi, Constrained relative motions in rotational mechanics. Arch. Rational Mech. Anal. 115 (1991) 101-135. [CrossRef] [MathSciNet]
  4. S.K. Biswas and N.U. Ahmed, Optimal control of large space structures governed by a coupled system of ordinary and partial differential equations. Math. Control Signals Systems 2 (1989) 1-18. [CrossRef] [MathSciNet]
  5. B. Chentouf and J.F. Couchouron, Nonlinear feedback stabilization of a rotating body-beam without damping. ESAIM: COCV 4 (1999) 515-535. [CrossRef] [EDP Sciences]
  6. J.-M. Coron and B. d'Andréa-Novel, Stabilization of a rotating body beam without damping. IEEE Trans. Automat. Control 43 (1998) 608-618. [CrossRef] [MathSciNet]
  7. C.J. Damaren and G.M.T. D'Eleuterio, Optimal control of large space structures using distributed gyricity. J. Guidance Control Dynam. 12 (1989) 723-731. [CrossRef] [MathSciNet]
  8. I. Ekeland and R. Temam, Convex Analysis and Variational Problems. North-Holland Publishing Company, Amsterdam (1976).
  9. H. Laousy, C.Z. Xu and G. Sallet, Boundary feedback stabilization of a rotating body-beam system. IEEE Trans. Automat. Control 41 (1996) 241-245. [CrossRef] [MathSciNet]
  10. J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin (1971).
  11. J.L. Lions and E. Magenes, Non-homogeneous Boundary value Problems and Applications, Vol. I. Springer-Verlag, Berlin, Heidelberg, New York (1972).
  12. A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983).
  13. J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. (4) CXLVI (1987) 65-96.
  14. R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd Ed. Springer-Verlag, New York (1997).
  15. C.Z. Xu and J. Baillieul, Stabilizability and stabilization of a rotating body-beam system with torque control. IEEE Trans. Automat. Control 38 (1993) 1754-1765. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.