Free Access
Volume 7, 2002
Page(s) 223 - 237
Published online 15 September 2002
  1. L. Ambrosio, A compactness theorem for a special class of functions of bounded variation. Boll. Un. Mat. Ital. 3-B (1989) 857-881. [Google Scholar]
  2. L. Ambrosio, I. Fonseca, P. Marcellini and L. Tartar, On a volume constrained variational problem. Arch. Rat. Mech. Anal. 149 (1999) 23-47. [CrossRef] [MathSciNet] [Google Scholar]
  3. N. Aguilera, H.W. Alt and L.A. Caffarelli, An optimization problem with volume constraint. SIAM J. Control Optim. 24 (1986) 191-198. [CrossRef] [MathSciNet] [Google Scholar]
  4. H.W. Alt and L.A. Caffarelli, Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325 (1981) 105-144. [MathSciNet] [Google Scholar]
  5. A. Braides and V. Chiadò-Piat, Integral representation results for functionals defined on Formula . J. Math. Pures Appl. 75 (1996) 595-626. [Google Scholar]
  6. G. Congedo and L. Tamanini, On the existence of solutions to a problem in multidimensional segmentation. Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1991) 175-195. [Google Scholar]
  7. E. De Giorgi and L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei 82 (1988) 199-210. [Google Scholar]
  8. G. Dal Maso, An Introduction to Γ-convergence. Birkhäuser (1993). [Google Scholar]
  9. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Stud. Adv. Math. (1992). [Google Scholar]
  10. E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser (1984). [Google Scholar]
  11. M.E. Gurtin, D. Polignone and J. Vinals, Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6 (1996) 815-831. [CrossRef] [MathSciNet] [Google Scholar]
  12. P. Tilli, On a constrained variational problem with an arbitrary number of free boundaries. Interf. Free Boundaries 2 (2000) 201-212. [CrossRef] [MathSciNet] [Google Scholar]
  13. W. Ziemer, Weakly Differentiable Functions. Springer-Verlag (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.