Free Access
Issue
ESAIM: COCV
Volume 7, 2002
Page(s) 179 - 222
DOI https://doi.org/10.1051/cocv:2002008
Published online 15 September 2002
  1. H. Baumann et H.J. Oberle, Numerical computation of optimal trajectories for coplanar aeroassisted orbital transfer. J. Optim. Theory Appl. 107 (2000) 457-479. [CrossRef] [MathSciNet] [Google Scholar]
  2. O. Bolza, Calculus of variations. Chelsea (1973). [Google Scholar]
  3. F. Bonnans et G. Launay, Large scale direct optimal control applied to the re-entry problem. J. Guidance, Control and Dynamics 21 (1998) 996-1000. [Google Scholar]
  4. B. Bonnard et G. Launay, Time minimal control of batch reactors. ESAIM: COCV 3 (1998) 407-467. [CrossRef] [EDP Sciences] [Google Scholar]
  5. B. Bonnard et I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des singulières. Forum Math. 5 (1993) 111-159. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Bryson et Y.C. Ho, Applied optimal control. Hemisphere Pub. Corporation (1975). [Google Scholar]
  7. J.B. Caillau et J. Noailles, Coplanar control of a satellite around the Earth. ESAIM: COCV 6 (2001) 239-258. [CrossRef] [EDP Sciences] [Google Scholar]
  8. CNES, Mécanique spatiale. Cepadues Eds. (1993). [Google Scholar]
  9. J.M. Coron et L. Praly, Guidage en rentrée atmosphérique, Rapport 415. CNES (2000). [Google Scholar]
  10. I. Ekeland, Discontinuité des champs de vecteurs extrémaux en calcul des variations. Publ. Math. IHES 47 (1977) 5-32. [Google Scholar]
  11. A.D. Ioffe et V.M. Tikhomirov, Theory of extremal problems. North Holland (1979). [Google Scholar]
  12. P.H. Jacobson et al., New necessary conditions of optimality for control problems with state-variable inequality constraints. J. Math. Anal. 35 (1971) 255-284. [CrossRef] [MathSciNet] [Google Scholar]
  13. A.J. Krener et H. Schättler, The structure of small time reachable sets in small dimensions. SIAM J. Control Optim. 27 (1989) 120-147. [CrossRef] [MathSciNet] [Google Scholar]
  14. I. Kupka, Geometric theory of extremals in optimal control problems. Trans. Amer. Math. Soc. 299 (1987) 225-243. [MathSciNet] [Google Scholar]
  15. H. Maurer, On optimal control problems with bounded state variables and control appearing linearly. SIAM J. Control Optim. 15 (1977) 345-362. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Miele, Recent advances in the optimization and guidance of aeroassisted orbital transfers. Acta Astronautica 38 (1996) 747-768. [CrossRef] [Google Scholar]
  17. H.J. Pesch, A practical guide to the solution of real-life optimal control problems. Control Cybernet. 23 (1994). [Google Scholar]
  18. V. Pontryagin et al., Méthodes mathématiques des processus optimaux. Eds. Mir (1974). [Google Scholar]
  19. H. Schättler, The local structure of time-optimal trajectories in dimension 3 under generic conditions. SIAM J. Control Optim. 26 (1988) 899-918. [CrossRef] [MathSciNet] [Google Scholar]
  20. H.J. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: The Formula non singular case. SIAM J. Control Optim. 25 (1987) 856-905. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.