Free Access
Issue |
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
|
|
---|---|---|
Page(s) | 555 - 585 | |
DOI | https://doi.org/10.1051/cocv:2002046 | |
Published online | 15 August 2002 |
- E. Acerbi, V. Chiado' Piat, G. Dal Maso and D. Percivale, An extension theorem for connected sets, and homogenization in general periodic domains. Nonlinear Anal. TMA 18 (1992) 481-495. [CrossRef] [MathSciNet] [Google Scholar]
- G. Allaire and F. Murat, Homogenization of the Neumann problem with non-isolated holes. Asymptot. Anal. 7 (1993) 81-95. [Google Scholar]
- H. Attouch, Variational convergence for functions and operators. Pitman, Boston, Appl. Math. Ser. (1984). [Google Scholar]
- N.S. Bakhvalov and G.P. Panasenko, Homogenization: Averaging Processes in Periodic Media. Kluwer, Dordrecht (1989). [Google Scholar]
- A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978). [Google Scholar]
- B. Bojarski, Remarks on Sobolev imbedding inequalities, in Complex Analysis. Springer-Verlag, Lecture Notes in Math. 1351 (1988) 257-324. [Google Scholar]
- M. Briane, Poincare'-Wirtinger's inequality for the homogenization in perforated domains. Boll. Un. Mat. Ital. B 11 (1997) 53-82. [MathSciNet] [Google Scholar]
- M. Briane, A. Damlamian and P. Donato, H-convergence in perforated domains, in Nonlinear Partial Differential Equations Appl., Collège de France Seminar, Vol. XIII, edited by D. Cioranescu and J.-L. Lions. Longman, New York, Pitman Res. Notes in Math. Ser. 391 (1998) 62-100. [Google Scholar]
- S. Buckley and P. Koskela, Sobolev-Poincaré implies John. Math. Res. Lett. 2 (1995) 577-593. [MathSciNet] [Google Scholar]
- D. Chenais, On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52 (1975) 189-219. [Google Scholar]
- D. Cioranescu and P. Donato, An Introduction to Homogenization. Oxford University Press, Oxford Lecture Ser. in Math. Appl. 17 (1999). [Google Scholar]
- D. Cioranescu and J. Saint Jean Paulin, Homogenization in open sets with holes. J. Math. Anal. Appl. 71 (1979) 590-607. [Google Scholar]
- D. Cioranescu and J. Saint Jean Paulin, Homogenization of reticulated structures. Springer-Verlag, Berlin, New York (1999). [Google Scholar]
- C. Conca and P. Donato, Non-homogeneous Neumann problems in domains with small holes. ESAIM: M2AN 22 (1988) 561-608. [Google Scholar]
- A. Damlamian and P. Donato, Homogenization with small shape-varying perforations. SIAM J. Math. Anal. 22 (1991) 639-652. [CrossRef] [MathSciNet] [Google Scholar]
- F.W. Gehring and O. Martio, Quasiextremal distance domains and extension of quasiconformal mappings. J. Anal. Math. 45 (1985) 181-206. [CrossRef] [Google Scholar]
- F.W. Gehring and B.G. Osgood, Uniform domains and the quasi-hyperbolic metric. J. Anal. Math. 36 (1979) 50-74. [CrossRef] [Google Scholar]
- E. Hruslov, The asymptotic behavior of solutions of the second boundary value problem under fragmentation of the boundary of the domain. Maths. USSR Sbornik 35 (1979). [Google Scholar]
- P. Jones, Quasiconformal mappings and extensions of functions in Sobolev spaces. Acta Math. 1-2 (1981) 71-88. [CrossRef] [MathSciNet] [Google Scholar]
- O. Martio, Definitions for uniform domains. Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980) 179-205. [MathSciNet] [Google Scholar]
- O. Martio, John domains, bilipschitz balls and Poincaré inequality. Rev. Roumaine Math. Pures Appl. 33 (1988) 107-112. [MathSciNet] [Google Scholar]
- O. Martio and J. Sarvas, Injectivity theorems in plane and space. Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979) 383-401. [MathSciNet] [Google Scholar]
- V.G. Maz'ja, Sobolev spaces. Springer-Verlag, Berlin (1985). [Google Scholar]
- F. Murat, H-Convergence, Séminaire d'Analyse Fonctionnelle et Numérique (1977/1978). Université d'Alger, Multigraphed. [Google Scholar]
- F. Murat and L. Tartar, H-Convergence, in Topics in the Mathematical Modelling of Composite Materials, edited by A. Cherkaev and R. Kohn. Birkhäuser, Boston (1997) 21-43. [Google Scholar]
- E. Sanchez-Palencia, Non homogeneous Media and Vibration Theory. Springer-Verlag, Lecture Notes in Phys. 127 (1980). [Google Scholar]
- W. Smith and D.A. Stegenga, Hölder domains and Poincaré domains. Trans. Amer. Math. Soc. 319 (1990) 67-100. [Google Scholar]
- S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Sc. Norm. Sup. Pisa 22 (1968) 571-597. [Google Scholar]
- E.M. Stein, Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, N.J. (1970). [Google Scholar]
- L. Tartar, Cours Peccot au Collège de France (1977). [Google Scholar]
- J. Väisalä, Uniform domains. Tohoku Math. J. 40 (1988) 101-118. [CrossRef] [MathSciNet] [Google Scholar]
- H. Wallin, The trace to the boundary of Sobolev spaces on a snowflake. Manuscripta Math. 73 (1991) 117-125. [CrossRef] [MathSciNet] [Google Scholar]
- V.V. Zhikov, Connectedness and Homogenization. Examples of fractal conductivity. Sbornik Math. 187 (1196) 1109-1147. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.