Free Access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 587 - 602
DOI https://doi.org/10.1051/cocv:2002038
Published online 15 August 2002
  1. J.M. Bismut, Large deviations and the Malliavin Calculus. Birkhäuser (1984). [Google Scholar]
  2. H. Brézis, Opérateurs maximaux monotones. North-Holland, Amsterdam (1973). [Google Scholar]
  3. S. Cerrai, A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum 49 (1994) 349-367. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Cerrai, Second order PDE's in finite and infinite dimensions. A probabilistic approach. Springer, Lecture Notes in Math. 1762 (2001). [Google Scholar]
  5. S. Cerrai, Optimal control problems for stochastic reaction-diffusion systems with non Lipschitz coefficients. SIAM J. Control Optim. 39 (2001) 1779-1816. [CrossRef] [MathSciNet] [Google Scholar]
  6. S. Cerrai, Stationary Hamilton-Jacobi equations in Hilbert spaces and applications to a stochastic optimal control problem. SIAM J. Control Optim. (to appear). [Google Scholar]
  7. G. Da Prato, Stochastic evolution equations by semigroups methods. Centre de Recerca Matematica, Barcelona, Quaderns 11 (1998). [Google Scholar]
  8. G. Da Prato, A. Debussche and B. Goldys, Invariant measures of non symmetric dissipative stochastic systems. Probab. Theor. Related Fields (to appear). [Google Scholar]
  9. G. Da Prato, D. Elworthy and J. Zabczyk, Strong Feller property for stochastic semilinear equations. Stochastic Anal. Appl. 13 (1995) 35-45. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Da Prato and M. Röckner, Singular dissipative stochastic equations in Hilbert spaces, Preprint. S.N.S. Pisa (2001). [Google Scholar]
  11. G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Cambridge University Press (1992). [Google Scholar]
  12. G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems. Cambridge University Press, London Math. Soc. Lecture Notes 229 (1996). [Google Scholar]
  13. G. Da Prato and J. Zabczyk, Differentiability of the Feynman-Kac semigroup and a control application. Rend. Mat. Accad. Lincei. 8 (1997) 183-188. [Google Scholar]
  14. E.B. Dynkin, Markov Processes, Vol. I. Springer-Verlag (1965). [Google Scholar]
  15. K.D. Elworthy, Stochastic flows on Riemannian manifolds, edited by M.A. Pinsky and V. Wihstutz. Birkhäuser, Diffusion Processes and Related Problems in Analysis II (1992) 33-72. [Google Scholar]
  16. W.H. Fleming and H.M. Soner, Controlled Markov processes and viscosity solutions. Springer-Verlag (1993). [Google Scholar]
  17. T. Kato, Nonlinear semigroups and evolution equations. J. Math. Soc. Japan 10 (1967) 508-520. [CrossRef] [MathSciNet] [Google Scholar]
  18. K.R. Parthasarathy, Probability measures on metric spaces. Academic Press (1967). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.