Free Access
Issue |
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
|
|
---|---|---|
Page(s) | 603 - 619 | |
DOI | https://doi.org/10.1051/cocv:2002036 | |
Published online | 15 August 2002 |
- P.G. Ciarlet, Mathematical elasticity. Vol. I. Three-dimensional elasticity. Vol. II: Theory of plates. Vol. III: Theory of shells. North-Holland Publishing Co., Amsterdam (1988, 1997, 2000). [Google Scholar]
- D. Cioranescu, O.A. Oleinik and G. Tronel, On Korn's inequalities for frame type structures and junctions. C. R. Acad. Sci. Paris Sér. I Math. 309 (1989) 591-596. [Google Scholar]
- L. Desvillettes, Convergence to equilibrium in large time for Boltzmann and BGK equations. Arch. Rational Mech. Anal. 110 (1990) 73-91. [CrossRef] [MathSciNet] [Google Scholar]
- L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The Boltzmann equation. Work in progress. [Google Scholar]
- G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics. Springer-Verlag, Berlin (1976). Translated from the French by C.W. John, Grundlehren der Mathematischen Wissenschaften, 219. [Google Scholar]
- K.O. Friedrichs, On the boundary-value problems of the theory of elasticity and Korn's inequality. Ann. Math. 48 (1947) 441-471. [Google Scholar]
- S. Gallot, D. Hulin and J. Lafontaine, Riemannian geometry, Second Edition. Springer-Verlag, Berlin (1990). [Google Scholar]
- J. Gobert, Une inégalité fondamentale de la théorie de l'élasticité. Bull. Soc. Roy. Sci. Liège 31 (1962) 182-191. [Google Scholar]
- H. Grad, On Boltzmann's H-theorem. J. Soc. Indust. Appl. Math. 13 (1965) 259-277. [CrossRef] [MathSciNet] [Google Scholar]
- C.O. Horgan, Korn's inequalities and their applications in continuum mechanics. SIAM Rev. 37 (1995) 491-511. [CrossRef] [MathSciNet] [Google Scholar]
- C.O. Horgan and L.E. Payne, On inequalities of Korn, Friedrichs and Babuska-Aziz. Arch. Rational Mech. Anal. 82 (1983) 165-179. [MathSciNet] [Google Scholar]
- R.V. Kohn, New integral estimates for deformations in terms of their nonlinear strains. Arch. Rational Mech. Anal. 78 (1982) 131-172. [CrossRef] [MathSciNet] [Google Scholar]
- A. Korn, Solution générale du problème d'équilibre dans la théorie de l'élasticité, dans le cas où les effets sont donnés à la surface. Ann. Fac. Sci. Univ. Toulouse 10 (1908) 165-269. [Google Scholar]
- J.A. Nitsche, On Korn's second inequality. RAIRO: Anal. Numér. 15 (1981) 237-248. [CrossRef] [Google Scholar]
- V.A. Kondratiev and O.A. Oleinik, On Korn's inequalities. C. R. Acad. Sci. Paris Sér. I Math. 308 (1989) 483-487. [Google Scholar]
- E.I. Ryzhak, Korn's constant for a parallelepiped with a free face or pair of faces. Math. Mech. Solids 4 (1999) 35-55. [Google Scholar]
- C. Villani, Topics in mass transportation. Preprint (2002). [Google Scholar]
- Y. Shizuta and K. Asano, Global solutions of the Boltzmann equation in a bounded convex domain. Proc. Japan Acad. Ser. A Math. Sci. 53 (1977) 3-5. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.