Free Access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 603 - 619
DOI https://doi.org/10.1051/cocv:2002036
Published online 15 August 2002
  1. P.G. Ciarlet, Mathematical elasticity. Vol. I. Three-dimensional elasticity. Vol. II: Theory of plates. Vol. III: Theory of shells. North-Holland Publishing Co., Amsterdam (1988, 1997, 2000).
  2. D. Cioranescu, O.A. Oleinik and G. Tronel, On Korn's inequalities for frame type structures and junctions. C. R. Acad. Sci. Paris Sér. I Math. 309 (1989) 591-596.
  3. L. Desvillettes, Convergence to equilibrium in large time for Boltzmann and BGK equations. Arch. Rational Mech. Anal. 110 (1990) 73-91. [CrossRef] [MathSciNet]
  4. L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The Boltzmann equation. Work in progress.
  5. G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics. Springer-Verlag, Berlin (1976). Translated from the French by C.W. John, Grundlehren der Mathematischen Wissenschaften, 219.
  6. K.O. Friedrichs, On the boundary-value problems of the theory of elasticity and Korn's inequality. Ann. Math. 48 (1947) 441-471. [CrossRef]
  7. S. Gallot, D. Hulin and J. Lafontaine, Riemannian geometry, Second Edition. Springer-Verlag, Berlin (1990).
  8. J. Gobert, Une inégalité fondamentale de la théorie de l'élasticité. Bull. Soc. Roy. Sci. Liège 31 (1962) 182-191.
  9. H. Grad, On Boltzmann's H-theorem. J. Soc. Indust. Appl. Math. 13 (1965) 259-277. [CrossRef] [MathSciNet]
  10. C.O. Horgan, Korn's inequalities and their applications in continuum mechanics. SIAM Rev. 37 (1995) 491-511. [CrossRef] [MathSciNet]
  11. C.O. Horgan and L.E. Payne, On inequalities of Korn, Friedrichs and Babuska-Aziz. Arch. Rational Mech. Anal. 82 (1983) 165-179. [MathSciNet]
  12. R.V. Kohn, New integral estimates for deformations in terms of their nonlinear strains. Arch. Rational Mech. Anal. 78 (1982) 131-172. [CrossRef] [MathSciNet]
  13. A. Korn, Solution générale du problème d'équilibre dans la théorie de l'élasticité, dans le cas où les effets sont donnés à la surface. Ann. Fac. Sci. Univ. Toulouse 10 (1908) 165-269.
  14. J.A. Nitsche, On Korn's second inequality. RAIRO: Anal. Numér. 15 (1981) 237-248. [MathSciNet]
  15. V.A. Kondratiev and O.A. Oleinik, On Korn's inequalities. C. R. Acad. Sci. Paris Sér. I Math. 308 (1989) 483-487.
  16. E.I. Ryzhak, Korn's constant for a parallelepiped with a free face or pair of faces. Math. Mech. Solids 4 (1999) 35-55. [CrossRef] [MathSciNet]
  17. C. Villani, Topics in mass transportation. Preprint (2002).
  18. Y. Shizuta and K. Asano, Global solutions of the Boltzmann equation in a bounded convex domain. Proc. Japan Acad. Ser. A Math. Sci. 53 (1977) 3-5. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.