Free Access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 1007 - 1028
DOI https://doi.org/10.1051/cocv:2002041
Published online 15 August 2002
  1. M.A. Akgun, J.H. Garcelon and R.T. Haftka, Fast exact linear and non-linear structural reanalysis and the Sherman-Morrison-Woodbury formulas. Int. J. Numer. Meth. Engrg. 50 (2001) 1587-1606. [CrossRef]
  2. E. Allgower and K. Georg, Simplicial and continuation methods for approximating fixed-points and solutions to systems of equations. SIAM Rev. 22 (1980) 28-85. [CrossRef] [MathSciNet]
  3. B.O. Almroth, P. Stern and F.A. Brogan, Automatic choice of global shape functions in structural analysis. AIAA J. 16 (1978) 525-528. [CrossRef]
  4. M. Avriel, Nonlinear Programming: Analysis and Methods. Prentice-Hall, Inc., Englewood Cliffs, NJ (1976).
  5. E. Balmes, Parametric families of reduced finite element models. Theory and applications. Mech. Systems and Signal Process. 10 (1996) 381-394. [CrossRef]
  6. A. Barrett and G. Reddien, On the Reduced Basis Method. Z. Angew. Math. Mech. 75 (1995) 543-549. [MathSciNet]
  7. T.F. Chan and W.L. Wan, Analysis of projection methods for solving linear systems with multiple right-hand sides. SIAM J. Sci. Comput. 18 (1997) 1698. [CrossRef] [MathSciNet]
  8. C. Farhat, L. Crivelli and F.X. Roux, Extending substructure based iterative solvers to multiple load and repeated analyses. Comput. Meth. Appl. Mech. Engrg. 117 (1994) 195-209. [CrossRef]
  9. J.P. Fink and W.C. Rheinboldt, On the error behavior of the reduced basis technique for nonlinear finite element approximations. Z. Angew. Math. Mech. 63 (1983) 21-28. [CrossRef] [MathSciNet]
  10. L. Machiels, Y. Maday, I.B. Oliveira, A.T. Patera and D.V. Rovas, Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 153-158.
  11. Y. Maday, A.T. Patera and G. Turinici, Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations. C. R. Acad. Sci. Paris Sér. I Math. (submitted).
  12. Y. Maday, A.T. Patera and G. Turinici, A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations. J. Sci. Comput. (accepted).
  13. A.K. Noor and J.M. Peters, Reduced basis technique for nonlinear analysis of structures. AIAA J. 18 (1980) 455-462. [CrossRef]
  14. J.S. Peterson, The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci. Stat. Comput. 10 (1989) 777-786. [CrossRef]
  15. T.A. Porsching, Estimation of the error in the reduced basis method solution of nonlinear equations. Math. Comput. 45 (1985) 487-496. [CrossRef] [MathSciNet]
  16. C. Prud'homme, D. Rovas, K. Veroy, Y. Maday, A.T. Patera and G. Turinici, Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. J. Fluids Engrg. 124 (2002) 70-80.
  17. W.C. Rheinboldt, Numerical analysis of continuation methods for nonlinear structural problems. Comput. & Structures 13 (1981) 103-113. [CrossRef] [MathSciNet]
  18. W.C. Rheinboldt, On the theory and error estimation of the reduced basis method for multi-parameter problems. Nonlinear Anal. Theor. Meth. Appl. 21 (1993) 849-858. [CrossRef] [MathSciNet]
  19. E.L. Yip, A note on the stability of solving a rank-p modification of a linear system by the Sherman-Morrison-Woodbury formula. SIAM J. Sci. Stat. Comput. 7 (1986) 507-513. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.