Free Access
Issue
ESAIM: COCV
Volume 9, February 2003
Page(s) 579 - 600
DOI https://doi.org/10.1051/cocv:2003028
Published online 15 September 2003
  1. G. Chen, C.M. Delfour, A.M. Krall and G. Payre, Modeling, stabilization and control of serially connected beam. SIAM J. Control Optim. 25 (1987) 526-546. [CrossRef] [MathSciNet] [Google Scholar]
  2. G. Chen, S.G. Krantz, D.W. Ma, C.E. Wayne and H.H. West, The Euler-Bernoulli beam equation with boundary energy dissipation, in Operator methods for optimal control problems, edited by Sung J. Lee. Marcel Dekker, New York (1988) 67-96. [Google Scholar]
  3. G. Chen, S.G. Krantz, D.L. Russell, C.E. Wayne and H.H. West, Analysis, design and behavior of dissipative joints for coupled beams. SIAM J. Appl. Math. 49 (1989) 1665-1693. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Conrad, Stabilization of beams by pointwise feedback control. SIAM J. Control Optim. 28 (1990) 423-437. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.E. Lagnese, G. Leugering and E. Schmidt, Modeling, analysis and control of dynamic Elastic Multi-link structures. Birkhauser, Basel (1994). [Google Scholar]
  6. R. Rebarber, Exponential stability of coupled beam with dissipative joints: A frequency domain approach. SIAM J. Control Optim. 33 (1995) 1-28. [CrossRef] [MathSciNet] [Google Scholar]
  7. K. Ammari and M. Tucsnak, Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force. SIAM J. Control Optim. 39 (2000) 1160-1181. [CrossRef] [MathSciNet] [Google Scholar]
  8. J.U. Kim and Y. Renardy, Boundary control of the Timoshenko beam. SIAM. J. Control Optim. 25 (1987) 1417-1429. [Google Scholar]
  9. K. Ito and N. Kunimatsu, Semigroup model and stability of the structurally damped Timoshenko beam with boundary inputs. Int. J. Control 54 (1991) 367-391. [CrossRef] [Google Scholar]
  10. Ö. Morgül, Boundary control of a Timoshenko beam attached to a rigid body: Planar motion. Int. J. Control 54 (1991) 763-791. [CrossRef] [Google Scholar]
  11. D.H. Shi and D.X. Feng, Feedback stabilization of a Timoshenko beam with an end mass. Int. J. Control 69 (1998) 285-300. [CrossRef] [Google Scholar]
  12. D.X. Feng, D.H. Shi and W.T. Zhang, Boundary feedback stabilization of Timoshenko beam with boundary dissipation. Sci. China Ser. A 41 (1998) 483-490. [CrossRef] [MathSciNet] [Google Scholar]
  13. F. Conrad and Ö. Morgül, On the stabilization of a flexible beam with a tip mass. SIAM J. Control Optim. 36 (1998) 1962-1986. [CrossRef] [MathSciNet] [Google Scholar]
  14. B.Z. Guo and R.Y. Yu, The Riesz basis property of discrete operators and application to a Euler-Bernoulli beam equation with boundary linear feedback control. IMA J. Math. Control Inform. 18 (2001) 241-251. [Google Scholar]
  15. B.P. Rao, Optimal energy decay rate in a damped Rayleigh beam, edited by S. Cox and I. Lasiecka. Contemp. Math. 209 (1997) 221-229. [Google Scholar]
  16. G.Q. Xu, Boundary feedback control of elastic beams, Ph.D. Thesis. Institute of Mathematics and System Science, Chinese Academy of Sciences (2000). [Google Scholar]
  17. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York, Appl. Math. Sci. 44 (1983). [Google Scholar]
  18. R.M. Young An introduction to nonharmonic Fourier series. Academic Press, Inc. New York (1980). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.