Free Access
Issue
ESAIM: COCV
Volume 9, March 2003
Page(s) 601 - 619
DOI https://doi.org/10.1051/cocv:2003029
Published online 15 September 2003
  1. S. Alama and Y.Y. Li, Existence of solutions for semilinear elliptic equations with indefinite linear part. J. Differential Equations 96 (1992) 89-115. [CrossRef] [MathSciNet] [Google Scholar]
  2. S. Alama and Y.Y. Li, On ``multibump" bound states for certain semilinear elliptic equations. Indiana J. Math. 41 (1992) 983-1026. [CrossRef] [MathSciNet] [Google Scholar]
  3. T. Bartsch and Y. Ding, On a nonlinear Schrödinger equation with periodic potential. Math. Ann. 313 (1999) 15-37. [CrossRef] [MathSciNet] [Google Scholar]
  4. V. Benci and G. Cerami, Existence of positive solutions of the equation Formula in Formula . J. Funct. Anal. 88 (1990) 90-117. [CrossRef] [MathSciNet] [Google Scholar]
  5. B. Buffoni, L. Jeanjean and C.A. Stuart, Existence of nontrivial solutions to a strongly indefinite semilinear equation. Proc. Amer. Math. Soc. 119 (1993) 179-186. [MathSciNet] [Google Scholar]
  6. J. Chabrowski and A. Szulkin, On a semilinear Schrödinger equation with critical Sobolev exponent. Preprint of Stockholm University. [Google Scholar]
  7. J. Chabrowski and J. Yang, On Schrödinger equation with periodic potential and critical Sobolev exponent. Topol. Meth. Nonl. Anal. 12 (1998) 245-261. [Google Scholar]
  8. V. Coti-Zelati and P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on Formula . Comm. Pure Appl. Math. 45 (1992) 1217-1269. [CrossRef] [MathSciNet] [Google Scholar]
  9. N. Dunford and J.T. Schwartz, Linear Operators. Part I. Interscience (1967). [Google Scholar]
  10. L. Jeanjean, Solutions in spectral gaps for a nonlinear equation of Schrödinger type. J. Differential Equations 112 (1994) 53-80. [CrossRef] [MathSciNet] [Google Scholar]
  11. L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on Formula . Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 787-809. [MathSciNet] [Google Scholar]
  12. W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation. Adv. Differential Equations 3 (1998) 441-472. [MathSciNet] [Google Scholar]
  13. P. Kuchment, Floquet Theory for Partial Differential Equations. Birkhäuser, Basel (1993). [Google Scholar]
  14. Y.Y. Li, On Formula in Formula . Comm. Pure Appl. Math. 46 (1993) 303-340. [CrossRef] [MathSciNet] [Google Scholar]
  15. Y.Y. Li, Prescribing scalar curvature on Sn and related problems. Part I. J. Differential Equations 120 (1995) 319-410. [CrossRef] [MathSciNet] [Google Scholar]
  16. P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 223-283. [Google Scholar]
  17. M. Reed and B. Simon, Methods of modern mathematical physics, Vol. IV. Academic Press (1978). [Google Scholar]
  18. M. Schechter, Critical point theory with weak-to-weak linking. Comm. Pure Appl. Math. 51 (1998) 1247-1254. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Schechter, Ratationally invariant periodic solutions of semilinear wave equations. Preprint of the Department of Mathematics, University of California (1998). [Google Scholar]
  20. M. Schechter, Linking Methods in Critical Point Theory. Birkhäuser, Boston (1999). [Google Scholar]
  21. M. Struwe, The existence of surfaces of constant mean curvature with free boundaries. Acta Math. 160 (1988) 19-64. [CrossRef] [MathSciNet] [Google Scholar]
  22. C.A. Stuart, Bifurcation into Spectral Gaps. Bull. Belg. Math. Soc. Suppl. (1995). [Google Scholar]
  23. A. Szulkin and W. Zou, Homoclinic orbits for asymptotically linear Hamiltonian systems. J. Funct. Anal. 187 (2001) 25-41. [CrossRef] [MathSciNet] [Google Scholar]
  24. C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrödinger equation. Comm. Partial Differential Equations 21 (1996) 1431-1449. [CrossRef] [MathSciNet] [Google Scholar]
  25. M. Willem and W. Zou, On a semilinear Dirichlet problem and a nonlinear Schrödinger equation with periodic potential. Indiana Univ. Math. J. 52 (2003) 109-132. [CrossRef] [MathSciNet] [Google Scholar]
  26. M. Willem, Minimax Theorems. Birkhäuser, Boston (1996). [Google Scholar]
  27. W. Zou, Solitary Waves of the Generalized Kadomtsev-Petviashvili Equations. Appl. Math. Lett. 15 (2002) 35-39. [CrossRef] [MathSciNet] [Google Scholar]
  28. W. Zou, Variant Fountain Theorems and their Applications. Manuscripta Math. 104 (2001) 343-358. [CrossRef] [MathSciNet] [Google Scholar]
  29. M. Schechter, Some recent results in critical point theory. Pan Amer. Math. J. 12 (2002) 1-19. [Google Scholar]
  30. M. Schechter and W. Zou, Homoclinic Orbits for Schrödinger Systems. Michigan Math. J. 51 (2003) 59-71. [CrossRef] [MathSciNet] [Google Scholar]
  31. M. Schechter and W. Zou, Superlinear Problem. Pacific J. Math. (accepted). [Google Scholar]
  32. W. Zou and S. Li, New Linking Theorem and Elliptic Systems with Nonlinear Boundary Condition. Nonl. Anal. TMA 52 (2003) 1797-1820. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.