Free Access
Volume 9, February 2003
Page(s) 67 - 103
Published online 15 September 2003
  1. V. Barbu, Analysis and control of nonlinear infinite dimensional systems. Academic Press, Math. Sci. Engrg. 190 (1993). [Google Scholar]
  2. J.M. Ball, J.E. Marsden and M. Slemrod, Controllability of distributed bilinear systems. SIAM J. Control Optim. 20 (1982) 575-597. [CrossRef] [MathSciNet] [Google Scholar]
  3. V. Barbu, Nonlinear semigroups and differential equations in Banach spaces. Noordhoff (1976). [Google Scholar]
  4. A.S. Besicovitch, Almost periodic functions. Dover, New-York (1954). [Google Scholar]
  5. P. Bénilan, Equations d'évolution dans un espace de Banach quelconque et applications, Thèse. Univ. Paris-XI, Orsay, France (1972). [Google Scholar]
  6. P. Bénilan, M.G. Crandall and A. Pazy, Bonnes solutions d'un problème d'évolution semi-linéaire. C. R. Acad. Sci. Paris 306 (1988) 527-530. [Google Scholar]
  7. P. Bénilan, M.G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces. Preprint book (to appear). [Google Scholar]
  8. H. Bounit and H. Hammouri, Observer design for distributed parameter dissipative bilinear systems. Appl. Math. Comput. Sci. 8 (1998) 381-402. [MathSciNet] [Google Scholar]
  9. H. Bounit, Contribution à la stabilisation et à la construction d'observateurs pour une classe de systèmes à paramètres distribués, Thesis. Univ. Claude Bernard, Lyon-I, France (1996). [Google Scholar]
  10. H. Brezis,Analyse fonctionnelle. Masson, Paris, New-York, Barcelone, Milan, Mexico, Sao Paulo (1987). [Google Scholar]
  11. N. Carmichael, A.J. Pritchard and M.D. Quinn, State and parameter estimations for nonlinear systems. Appl. Math. Optim. 9 (1982) 133-161. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Celle, J.P. Gauthier, D. Kazakos and G. Sallet, Synthesis of nonlinear observers: A harmonic analysis approach. Math. System Theory 22 (1989) 291-322. [CrossRef] [Google Scholar]
  13. J.-F. Couchouron and M. Kamenski, An abstract topological point of view and a general averaging principle in the theory of differential inclusions. Nonlinear Anal. 42 (2000) 1101-1129. [CrossRef] [MathSciNet] [Google Scholar]
  14. J.-F. Couchouron, Compactness theorems for abstract evolution problems (submitted). [Google Scholar]
  15. M.G. Crandall, Nonlinear semigroups and evolution governed by accretive operators. Proc. Symp. Pure Math. 45 (1986) 305-337. [Google Scholar]
  16. R.F. Curtain and A.J. Pritchard, Infinite dimensional linear systems theory. Springer-Verlag, New York (1978). [Google Scholar]
  17. D. Dochain, Contribution to the analysis and control of distributed parameter systems with application to (bio)chemical processes and robotics, Thesis. Univ. Cath. Louvain, Belgium (1994). [Google Scholar]
  18. S. Dolecki and L. Russel, A general theory of observation and control. SIAM J. Control Optim. 15 (1977) 185-220. [Google Scholar]
  19. N. El Alami, Analyse et commande optimale des systèmes bilineaires à paramètres distribués - Application aux procédés énergétiques, Thèse. Univ. de Perpignan, France (1986). [Google Scholar]
  20. J.P. Gauthier and I. Kupka, Observability and observers for nonlinear systems. SIAM J. Control Optim. 32 (1994) 975-994. [CrossRef] [MathSciNet] [Google Scholar]
  21. J.P. Gauthier and I. Kupka, Observability for systems with more outputs than inputs and asymptotic observers. Math. Z. 223 (1996) 47-78. [CrossRef] [MathSciNet] [Google Scholar]
  22. J.P. Gauthier, C.Z. Xu and A. Bounabat, An observer for infinite dimensional skew-adjoint bilinear systems. J. Math. Syst. Estim. Control 5 (1995) 1-20. [Google Scholar]
  23. E. Hille and R.S. Philipps, Functional analysis and semi-groups. AMS colloquium publications, Vol. XXXI (1965). [Google Scholar]
  24. T. Kato, Perturbation theory of linear operators. Springer-Verlag, New-York (1966). [Google Scholar]
  25. T. Kato, Nonlinear evolution equations in Banach spaces. Proc. of Symp. Appl. Math. 17 (1965) 50-67. [Google Scholar]
  26. P. Ligarius, J.P. Gauthier and C.Z. Xu, A simple observer for distributed systems: Application on a heat exchanger. J. Math. Systems Estim. Control 8 (1998) 1-23 (retrieval code: 73494). [Google Scholar]
  27. P. Ligarius, Observateurs de systèmes bilinéaires à paramètres répartis - Applications à un échangeur thermique, Thesis. Univ. of Rouen, France (1995). [Google Scholar]
  28. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New-York (1983). [Google Scholar]
  29. A. El Jai and A.J. Pritchard, Capteurs et actionneurs dans l'analyse des systèmes distribués. Masson (1986). [Google Scholar]
  30. A.J. Pritchard, Introduction to semigroup theory. Springer-Verlag, Lecture Notes in Control Inform. Sci. 185 (1993) 1-22. [Google Scholar]
  31. J. Prüss, On semilinear evolution equations in Banach spaces. J. Reine Angew. Math. 303/304 (1978) 144-158. [Google Scholar]
  32. M. Slemrod, Feedback stabilization of a linear control system in Hilbert space with a priori bounded control. Math. Control Signal Syst. 2 (1989) 265-285. [Google Scholar]
  33. H.J. Sussman, Single input observability of continuous time systems. Math. Systems Theory 12 (1979) 371-393. [CrossRef] [MathSciNet] [Google Scholar]
  34. E. Sontag, On the observability of polynomial systems. SIAM J. Control Optim. 17 (1979) 139-151. [CrossRef] [MathSciNet] [Google Scholar]
  35. R. Temam, Infinite dimensional dynamical systems in mechanics and physics. Springer-Verlag, New York, Appl. Math. Sci. (1988). [Google Scholar]
  36. I.I. Vrabie, Compactness methods for nonlinear evolutions. John Wiley & Son, Pitman Monogr. Surveys Pures Appl. Math. 32 (1987). [Google Scholar]
  37. W.M. Wonham, .Linear multivariable control, a geometric approach, 3rd Edn. Springer-Verlag, New York (1985). [Google Scholar]
  38. C.Z. Xu, P. Ligarius and J.P. Gauthier, An observer for infinite dimensional dissipative bilinear systems. Comput. Math. Appl. 29 (1995) 13-21. [Google Scholar]
  39. C.Z. Xu and J.P. Gauthier, Analyse et commande d'un échangeur thermique à contre-courant. RAIRO APII 25 (1991) 377-396. [Google Scholar]
  40. C.Z. Xu, Exact observability and exponential stability of infinite dimensional bilinear systems. Math. Control Signals Syst. 9 (1996) 73-93. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.