Free Access
Issue
ESAIM: COCV
Volume 9, March 2003
Page(s) 105 - 124
DOI https://doi.org/10.1051/cocv:2003002
Published online 15 September 2003
  1. E. Acerbi and N. Fusco, Semicontinuity problems in the Calculus of Variations. Arch. Rational Mech. Anal. 86 (1984) 125-145. [CrossRef] [MathSciNet] [Google Scholar]
  2. L. Ambrosio, Introduzione alla Teoria Geometrica della Misura e Applicazioni alle Superfici Minime, Lectures Notes. Scuola Normale Superiore, Pisa (1996). [Google Scholar]
  3. L. Ambrosio, On the lower-semicontinuity of quasi-convex integrals in SBV. Nonlinear Anal. 23 (1994) 405-425. [CrossRef] [MathSciNet] [Google Scholar]
  4. L. Ambrosio, G. Buttazzo and I. Fonseca, Lower-semicontinuity problems in Sobolev spaces with respect to a measure. J. Math. Pures Appl. 75 (1996) 211-224. [MathSciNet] [Google Scholar]
  5. J.M. Ball and F. Murat, W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225-253. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Bouchitté and G. Buttazzo, Characterization of optimal shapes and masses through Monge-Kantorovich equation. J. Eur. Math. Soc. 3 (2001) 139-168. [CrossRef] [MathSciNet] [Google Scholar]
  7. G. Bouchitté, G. Buttazzo and I. Fragalà, Mean curvature of a measure and related variational problems. Ann. Scuola Norm. Sup. Pisa. Cl. Sci. IV XXV (1997) 179-196. [Google Scholar]
  8. G. Bouchitté, G. Buttazzo and I. Fragalà, Convergence of Sobolev spaces on varying manifolds. J. Geom. Anal. 11 (2001) 399-422. [MathSciNet] [Google Scholar]
  9. G. Bouchitté, G. Buttazzo and P. Seppecher, Energies with respect to a measure and applications to low dimensional structures. Calc. Var. Partial Differential Equations 5 (1997) 37-54. [MathSciNet] [Google Scholar]
  10. G. Bouchitté and I. Fragalà, Homogenization of thin structures by two-scale method with respect to measures. SIAM J. Math. Anal. 32 (2001) 1198-1126. [CrossRef] [MathSciNet] [Google Scholar]
  11. G. Bouchitté and I. Fragalà, Homogenization of elastic thin structures: A measure-fattening approach. J. Convex. Anal. (to appear). [Google Scholar]
  12. A. Braides, Semicontinuity, Γ-convergence and Homogenization for Multiple Integrals, Lectures Notes. SISSA, Trieste (1994). [Google Scholar]
  13. G. Buttazzo, Semicontinuity, Relaxation, and Integral Representation in the Calculus of Variations. Longman, Harlow, Pitman Res. Notes Math. Ser. 207 (1989). [Google Scholar]
  14. B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin, Appl. Math. Sci. 78 (1988). [Google Scholar]
  15. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Ann Harbor, Stud. in Adv. Math. (1992). [Google Scholar]
  16. H. Federer, Geometric Measure Theory. Springer-Verlag, Berlin (1969). [Google Scholar]
  17. I. Fonseca and S. Müller, Quasi-convex integrands and lower semicontinuity in L 1. SIAM J. Math. Anal. 23 (1992) 1081-1098. [CrossRef] [MathSciNet] [Google Scholar]
  18. I. Fragalà and C. Mantegazza, On some notions of tangent space to a measure. Proc. Roy. Soc. Edinburgh 129A (1999) 331-342. [Google Scholar]
  19. P. Hajlasz and P. Koskela, Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000). [Google Scholar]
  20. P. Hajlasz and P. Koskela, Sobolev meets Poincaré. C. R. Acad. Sci. Paris 320 (1995) 1211-1215. [Google Scholar]
  21. A.D. Ioffe, On lower semicontinuity of integral functionals I and II. SIAM J. Contol Optim. 15 (1997) 521-538 and 991-1000. [CrossRef] [Google Scholar]
  22. J. Kristensen, Lower semicontinuity in spaces of weakly differentiable functions. J. Math. Ann. 313 (1999) 653-710. [CrossRef] [MathSciNet] [Google Scholar]
  23. J. Maly, Lower semicontinuity of quasiconvex integrals. Manuscripta Math. 85 (1994) 419-428. [CrossRef] [MathSciNet] [Google Scholar]
  24. J.P. Mandallena, Contributions à une approche générale de la régularisation variationnelle de fonctionnelles intégrales, Thèse de Doctorat. Université de Montpellier II (1999). [Google Scholar]
  25. P. Marcellini, Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals. Manuscripta Math. 51 (1985) 1-28. [CrossRef] [MathSciNet] [Google Scholar]
  26. P. Marcellini and C. Sbordone, On the existence of minima of multiple integrals in the Calculus of Variations. J. Math. Pures Appl. 62 (1983) 1-9. [MathSciNet] [Google Scholar]
  27. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, London (1995). [Google Scholar]
  28. C.B. Morrey, Multiple Integrals in the Calculus of Variations. Springer-Verlag, Berlin (1966). [Google Scholar]
  29. C. Olech, Weak lower semicontuity of integral functionals. J. Optim. Theory Appl. 19 (1976) 3-16. [CrossRef] [Google Scholar]
  30. T. O'Neil, A measure with a large set of tangent measures. Proc. Amer. Math. Soc. 123 (1995) 2217-2221. [MathSciNet] [Google Scholar]
  31. D. Preiss, Geometry of measures on Formula : Distribution, rectifiability and densities. Ann. Math. 125 (1987) 573-643. [Google Scholar]
  32. L. Simon, Lectures on Geometric Measure Theory. Australian Nat. Univ., Proc. Centre for Math. Anal. 3 (1983). [Google Scholar]
  33. M. Valadier, Multiapplications mesurables à valeurs convexes compactes. J. Math. Pures Appl. 50 (1971) 265-297. [MathSciNet] [Google Scholar]
  34. V.V. Zhikov, On an extension and an application of the two-scale convergence method. Mat. Sb. 191 (2000) 31-72. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.