Free Access
Issue
ESAIM: COCV
Volume 9, March 2003
Page(s) 49 - 66
DOI https://doi.org/10.1051/cocv:2002071
Published online 15 September 2003
  1. H. Ammari, M.S. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell Equations. J. Math. Pures Appl. 80 (2001) 769-814. [CrossRef] [MathSciNet] [Google Scholar]
  2. S. Andrieux and A. Ben Abda, Identification of planar cracks by complete overdetermined data: Inversion formulae. Inverse Problems 12 (1996) 553-563. [CrossRef] [MathSciNet] [Google Scholar]
  3. S. Andrieux, A. Ben Abda and M. Jaoua, On the inverse emerging plane crack problem. Math. Meth. Appl. Sci. 21 (1998) 895-907. [CrossRef] [MathSciNet] [Google Scholar]
  4. H.D. Bui, A. Constantinescu and H. Maigre, Diffraction acoustique inverse de fissure plane : solution explicite pour un solide borné. C. R. Acad. Sci. Paris Sér. II 327 (1999) 971-976. [Google Scholar]
  5. E. Beretta, A. Mukherjee and M. Vogelius, Asymptotic formuli for steady state voltage potentials in the presence of conductivity imperfection of small area. ZAMP 52 (2001) 543-572. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Brühl, M. Hanke and M.S. Vogelius, A direct impedance tomography algorithm for locating small inhomogeneities. Preprint (2001). [Google Scholar]
  7. A.P. Calderon, On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics. Soc. Brasileira de Matemática, Rio de Janeiro (1980) 65-73. [Google Scholar]
  8. D.J. Cedio-Fengya, S. Moskow and M.S. Vogelius, Identification of conductivity inperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Problems 14 (1998) 553-595. [CrossRef] [MathSciNet] [Google Scholar]
  9. I. Daubechies, Ten Lectures on Wavelets. SIAM, Philadelphia (1992). [Google Scholar]
  10. G.B. Folland, Introduction to Partial Differential Equations. Princeton University Press, Princeton (1976). [Google Scholar]
  11. A. Friedman and M. Vogelius, Identification of Small Inhomogeneities of Extreme Conductivity by Boundary Measurements: A Theorem on Continuous Dependence. Arch. Rational Mech. Anal. 105 (1989) 299-326. [CrossRef] [MathSciNet] [Google Scholar]
  12. S. He and V.G. Romanov, Identification of small flaws in conductors using magnetostatic measurements. Math. Comput. Simul. 50 (1999) 457-471. [CrossRef] [MathSciNet] [Google Scholar]
  13. M.S. Joshi and S.R. McDowall, Total determination of material parameters from electromagnetic boundary information. Pacific J. Math. (to appear). [Google Scholar]
  14. K. Miller, Stabilized numerical analytic prolongation with poles. SIAM J. Appl. Math. 18 (1970) 346-363. [CrossRef] [MathSciNet] [Google Scholar]
  15. P. Ola, L. Païvärinta and E. Somersalo, An inverse boundary value problem in electrodynamics. Duke Math. J. 70 (1993) 617-653. [CrossRef] [MathSciNet] [Google Scholar]
  16. M.S. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter. ESAIM: M2AN 34 (2000) 723-748. [Google Scholar]
  17. D. Volkov, An inverse problem for the time harmonic Maxwell Equations, Ph.D. Thesis. Rutgers University (2001). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.