Free Access
Issue
ESAIM: COCV
Volume 9, March 2003
Page(s) 19 - 48
DOI https://doi.org/10.1051/cocv:2002070
Published online 15 September 2003
  1. G. Alberti, Variational models for phase transitions, an approach via Formula -convergence, in Calculus of Variations and Partial Differential Equations, edited by G. Buttazzo et al. Springer-Verlag (2000) 95-114. [Google Scholar]
  2. G. Allaire, É. Bonnetier, G.A. Francfort and F. Jouve, Shape optimization by the homogenization method. Numer. Math. 76 (1997) 27-68. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Allaire, Shape optimization by the homogenization method. Springer-Verlag, New York (2002). [Google Scholar]
  4. L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. Partial Differential Equations 1 (1993) 55-69. [CrossRef] [MathSciNet] [Google Scholar]
  5. H. Attouch, Variational convergence for functions and operators. Applicable Mathematics Series. Pitman (Advanced Publishing Program), Boston, Mass.-London (1984). [Google Scholar]
  6. S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990) 67-90. [Google Scholar]
  7. A.C. Barroso and I. Fonseca, Anisotropic singular perturbations - the vectorial case. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 527-571. [MathSciNet] [Google Scholar]
  8. M.P. Bendsøe, Optimization of Structural Topology, Shape and Material. Springer Verlag, Berlin Heidelberg (1995). [Google Scholar]
  9. M.P. Bendsøe and O. Sigmund, Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69 (1999) 635-654. [CrossRef] [Google Scholar]
  10. É. Bonnetier and A. Chambolle, Computing the equilibrium configuration of epitaxially strained crystalline films. SIAM J. Appl. Math. 62 (2002) 1093-1121. [CrossRef] [MathSciNet] [Google Scholar]
  11. B. Bourdin and A. Chambolle, Implementation of an adaptive finite-element approximation of the Mumford-Shah functional. Numer. Math. 85 (2000) 609-646. [CrossRef] [MathSciNet] [Google Scholar]
  12. B. Bourdin, G.A. Francfort and J.-J. Marigo, Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000) 797-826. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system I - interfacial free energy. J. Chem. Phys. 28 (1958) 258-267. [CrossRef] [Google Scholar]
  14. A. Chambolle, Finite-differences discretizations of the Mumford-Shah functional. ESAIM: M2AN 33 (1999) 261-288. [CrossRef] [EDP Sciences] [Google Scholar]
  15. B.-C. Chen and N. Kikuchi, Topology optimization with design-dependent loads. Finite Elem. Anal. Des. 37 (2001) 57-70. [CrossRef] [Google Scholar]
  16. L.Q. Chen and J. Shen, Application of semi implicit Fourier-spectral method to phase field equations. Comput. Phys. Comm. 108 (1998) 147-158. [CrossRef] [Google Scholar]
  17. A. Cherkaev, Variational methods for structural optimization. Springer-Verlag, New York (2000). [Google Scholar]
  18. A. Cherkaev and R.V. Kohn, Topics in the mathematical modelling of composite materials. Birkhäuser Boston Inc., Boston, MA (1997). [Google Scholar]
  19. P.G. Ciarlet, Mathematical elasticity. Vol. I. North-Holland Publishing Co., Amsterdam (1988). Three-dimensional elasticity. [Google Scholar]
  20. G. Dal Maso, An introduction to Formula -convergence. Birkhäuser, Boston (1993). [Google Scholar]
  21. I. Ekeland and R. Témam, Convex analysis and variational problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, English Edition (1999). Translated from the French. [Google Scholar]
  22. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press, Boca Raton, FL (1992). [Google Scholar]
  23. D. Eyre, Systems of Cahn-Hilliard equations. SIAM J. Appl. Math. 53 (1993) 1686-1712. [CrossRef] [MathSciNet] [Google Scholar]
  24. K.J. Falconer, The geometry of fractal sets. Cambridge University Press, Cambridge (1986). [Google Scholar]
  25. H. Federer, Geometric measure theory. Springer-Verlag, New York (1969). [Google Scholar]
  26. E. Giusti, Minimal surfaces and functions of bounded variation. Birkhäuser, Boston (1984). [Google Scholar]
  27. R.B. Haber, C.S. Jog and M.P. Bendsøe, A new approach to variable-topology shape design using a constraint on the perimeter. Struct. Optim. 11 (1996) 1-12. [CrossRef] [Google Scholar]
  28. V.B. Hammer and N. Olhoff, Topology optimization of continuum structures subjected to pressure loading. Struct. Multidisc. Optim. 19 (2000) 85-92. [CrossRef] [Google Scholar]
  29. R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems I-III. Comm. Pure Appl. Math. 39 (1986) 113-137, 139-182, 353-377. [CrossRef] [MathSciNet] [Google Scholar]
  30. R.V. Kohn and G. Strang, Optimal design in elasticity and plasticity. Internat. J. Numer. Methods Engrg. 22 (1986) 183-188. [CrossRef] [MathSciNet] [Google Scholar]
  31. P.H. Leo, J.S Lowengrub and H.J. Jou, A diffuse interface model for microstructural evolution in elastically stressed solids. Acta Mater. 46 (1998) 2113-2130. [CrossRef] [Google Scholar]
  32. L. Modica and S. Mortola. Il limite nella Formula -convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5) 14 (1977) 526-529. [Google Scholar]
  33. L. Modica and S. Mortola, Un esempio di Formula -convergenza. Boll. Un. Mat. Ital. B (5) 14 (1977) 285-299. [MathSciNet] [Google Scholar]
  34. M. Negri, The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah functional. Numer. Funct. Anal. Optim. 20 (1999) 957-982. [CrossRef] [MathSciNet] [Google Scholar]
  35. R.H. Nochetto, S. Rovida, M. Paolini and C. Verdi, Variational approximation of the geometric motion of fronts, in Motion by mean curvature and related topics (Trento, 1992) de Gruyter, Berlin (1994) 124-149. [Google Scholar]
  36. S.J. Osher and F. Santosa, Level set methods for optimization problems involving geometry and constraints. I. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171 (2001) 272-288. [CrossRef] [MathSciNet] [Google Scholar]
  37. M. Paolini and C. Verdi, Asympto. and numerical analyses of the mean curvature flow with a space-dependent relaxation parameter. Asymptot. Anal. 5 (1992) 553-574. [Google Scholar]
  38. J.A. Sethian and A. Wiegmann, Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163 (2000) 489-528. [CrossRef] [MathSciNet] [Google Scholar]
  39. R. Temam, Problèmes mathématiques en plasticité. Gauthier-Villars, Paris (1983). [Google Scholar]
  40. W.P. Ziemer, Weakly Differentiable Functions. Springer-Verlag, Berlin (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.