Free Access
Issue
ESAIM: COCV
Volume 9, March 2003
Page(s) 1 - 18
DOI https://doi.org/10.1051/cocv:2002069
Published online 15 September 2003
  1. L. Alvarez, F. Guichard, P.L. Lions and J.M. Morel, Axioms and fundamental equations of image processing. Arch. Rational Mech. Anal. 16 (1993) 200-257. [Google Scholar]
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs (2000). [Google Scholar]
  3. L. Ambrosio, V. Caselles, S. Masnou and J.M. Morel, The Connected Components of Sets of Finite Perimeter. Eur. J. Math. 3 (2001) 39-92. [CrossRef] [MathSciNet] [Google Scholar]
  4. C. Ballester, E. Cubero-Castan, M. Gonzalez and J.M. Morel, Image intersection and applications to satellite imaging, Preprint. C.M.L.A., École Normale Supérieure de Cachan (1998). [Google Scholar]
  5. C. Ballester and V. Caselles, The M-components of level sets of continuous functions in WBV. Publ. Mat. 45 (2001) 477-527. [MathSciNet] [Google Scholar]
  6. V. Caselles and P. Monasse, Grain filters. J. Math. Imaging Vision (to appear). [Google Scholar]
  7. V. Caselles, B. Coll and J.M. Morel, Topographic Maps and Local Contrast Changes in Natural Images. Int. J. Comput. Vision 33 (1999) 5-27. [CrossRef] [Google Scholar]
  8. V. Caselles, J.L. Lisani, J.M. Morel and G. Sapiro, Shape Preserving Histogram Modification. IEEE Trans. Image Process. 8 (1999). [Google Scholar]
  9. T. Chan, G. Golub and P. Mulet, A Nonlinear Primal-Dual Method for TV-Based Image Restoration, in ICAOS'96, 12th International Conference on Analysis and Optimization of Systems: Images, Wavelets and PDE's, edited by M. Berger,R. Deriche, I. Herlin, J. Jaffre and J.M. Morel, Lecture Notes in Control and Inform. Sci. 219 (1996) 241-252. [Google Scholar]
  10. J.L. Cox and D.B. Karron, Digital Morse Theory (1998), available at http://www.casi.net [Google Scholar]
  11. E. De Giorgi and L. Ambrosio, Un nuovo tipo di funzionale del Calcolo delle Variazioni. Atti Accad. Naz. Lincei 8 (1988) 199-210. [Google Scholar]
  12. A. Desolneux, L. Moisan and J.M. Morel, Edge Detection by Helmholtz Principle. J. Math. Imaging Vision 14 (2001) 271-284. [CrossRef] [Google Scholar]
  13. F. Dibos and G. Koepfler, Total Variation Minimization by the Fast Level Sets Transform, in Proc. of IEEE Workshop on Variational and Level Sets Methods in Computer Vision (2001). [Google Scholar]
  14. F. Dibos, G. Koepfler and P. Monasse, Total Variation Minimization: Application to Gray-scale, Color Images and Optical Flow Regularization, in Geometric Level Sets Methods in Imaging, Vision and Graphics, edited by S. Osher and N. Paragios (to appear). [Google Scholar]
  15. F. Dibos, G. Koepfler and P. Monasse, Image Registration, in Geometric Level Sets Methods in Imaging, Vision and Graphics, edited by S. Osher and N. Paragios (to appear). [Google Scholar]
  16. S. Durand, F. Malgouyres and B. Rougé, Image Deblurring, Spectrum Interpolation and Application to Satellite Imaging. Math. Model. Numer. Anal. (to appear). [Google Scholar]
  17. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Math., CRC Press (1992). [Google Scholar]
  18. J. Froment, A compact and multiscale image model based on level sets, in Proc. of the 2nd Workshop on Scale-Space Theories in Computer Vision. Corfu, Greece (1999) 152-163. [Google Scholar]
  19. M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities. Springer-Verlag (1973). [Google Scholar]
  20. L. Alvarez, Y. Gousseau and J.M. Morel, Scales in natural images and a consequence on their BV norm, in Proc. of the 2nd Workshop on Scale-Space Theories in Computer Vision. Corfu, Greece (1999) 247-258. [Google Scholar]
  21. Y. Gousseau and J.M. Morel, Texture Synthesis through Level Sets. Preprint CMLA (2000). [Google Scholar]
  22. F. Guichard and J.M. Morel, Image iterative smoothing and P.D.E.'s (in preparation). [Google Scholar]
  23. C. Kuratowski, Topologie I, II. Editions J. Gabay (1992). [Google Scholar]
  24. J.-L. Lisani, L. Moisan, P. Monasse and J.M. Morel, Affine Invariant Mathematical Morphology Applied to a Generic Shape Recognition Algorithm. Comp. Imaging and Vision 18 (2000). [Google Scholar]
  25. D. Marr, Vision. Freeman and Co. (1981). [Google Scholar]
  26. S. Masnou, Filtrage et désocclusion d'images par méthodes d'ensembles de niveau, Ph.D. Thesis. Ceremade, Université Paris-Dauphine (1998). [Google Scholar]
  27. F. Meyer and S. Beucher, Morphological Segmentation. J. Visual Commun. Image Representation 1 (1990) 21-46. [CrossRef] [Google Scholar]
  28. J.M. Morel and S. Solimini, Variational methods in image processing. Birkhäuser (1994). [Google Scholar]
  29. J. Milnor, Morse Theory. Princeton University Press, Annals Math. Studies 51 (1963). [Google Scholar]
  30. A.S. Kronrod, On functions of two variables. Uspehi Mathematical Sciences (NS) 5 (1950) 24-134. [Google Scholar]
  31. S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, New York (1998). [Google Scholar]
  32. G. Matheron, Random Sets and Integral Geometry. John Wiley, NY (1975). [Google Scholar]
  33. F. Meyer and P. Maragos, Morphological scale-space representation with levelings, in Proc. of the 2nd Workshop on Scale-Space Theories in Computer Vision (1999) 187-198. [Google Scholar]
  34. P. Monasse, Contrast invariant image registration, in Proc. of International Conference on Acoustics. Speech and Signal Process. 6 (1999) 3221-3224. [Google Scholar]
  35. P. Monasse and F. Guichard, Fast computation of a contrast-invariant image representation. IEEE Trans. Image Process. 9 (2000) 860-872. [CrossRef] [PubMed] [Google Scholar]
  36. P. Monasse and F. Guichard, Scale-space from a level lines tree. J. Visual Commun. Image Representation 11 (2000) 224-236. [CrossRef] [Google Scholar]
  37. D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and variational problems. Comm. Pure Appl. Math. 42 (1988) 577-685. [CrossRef] [MathSciNet] [Google Scholar]
  38. M.H.A. Newman, Elements of the Topology of Plane Sets of Points. Dover Publications, New York (1992). [Google Scholar]
  39. L.I. Rudin, S. Osher and E. Fatemi, Nonlinear Total Variation Based Noise Removal Algorithms. Physica D 60 (1990) 259-269. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  40. P. Salembier, Morphological multiscale segmentation for image coding. IEEE Trans. Signal Process. 38 (1994) 359-386. [Google Scholar]
  41. P. Salembier, Region-based filtering of images and video sequences: A morphological viewpoint. Preprint (2000). [Google Scholar]
  42. P. Salembier and J. Serra, Flat zones filtering, connected operators and filters by reconstruction. IEEE Trans. Image Process. 4 (1995) 1153-1160. [CrossRef] [PubMed] [Google Scholar]
  43. P. Salembier, P. Brigger, J.R. Casas and M. Pardàs, Morphological Operators for Image and Video Compression. IEEE Trans. Image Process. 5 (1996) 881-897. [CrossRef] [PubMed] [Google Scholar]
  44. P. Salembier and L. Garrido, Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. IEEE Trans. Image Process. 9 (2000). [Google Scholar]
  45. J. Serra, Image analysis and mathematical morphology. Academic Press (1982). [Google Scholar]
  46. J. Serra, Image analysis and mathematical morphology. Volume 2: Theoretical Advances. Academic Press (1988). [Google Scholar]
  47. J. Serra and P. Salembier, Connected operators and pyramids, in Proc. SPIE Image Algebra Math. Morphology. San Diego, CA, SPIE 2030 (1993) 65-76. [Google Scholar]
  48. G. Sapiro and A. Tannenbaum, On affine plane curve evolution. J. Funct. Anal. 119 (1994) 79-120. [CrossRef] [MathSciNet] [Google Scholar]
  49. G. Sapiro and A. Tannenbaum, Affine invariant scale space. Int. J. Comput. Vision 11 (1993) 24-44. [Google Scholar]
  50. C. Vachier, Valuation of image extrema using alterning filters by reconstruction, in Proc. SPIE, Image Algebra and Morphological Processing (1995). [Google Scholar]
  51. L. Vincent, Grayscale area openings and closings, their efficient implementation and applications, in Proc. of the 1st Workshop on Mathematical Morphology and its Applications to Signal Processing, edited by J. Serra and Ph. Salembrier. Barcelona, Spain (1993) 22-27. [Google Scholar]
  52. L. Vincent, Morphological area openings and closings for grey-scale images, in Proc. of the Workshop Shape in Picture: Mathematical Description of Shape in Gray-Level Images. Driebergen, The Netherlands (1994) 197-208. [Google Scholar]
  53. L. Vincent and P. Soille, Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Machine Intell. 13 (1991) 583-598. [CrossRef] [Google Scholar]
  54. C.R. Vogel and M.E. Oman, Iterative Methods for Total Variation Denoising. SIAM J. Sci. Comput. (to appear). [Google Scholar]
  55. M. Wertheimer, Untersuchungen zur Lehre der Gestalt, II. Psychologische Forschung 4 (1923) 301-350. [CrossRef] [Google Scholar]
  56. L.P. Yaroslavsky and M. Eden, Fundamentals of digital optics. Birkhäuser, Boston (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.