Free Access
Volume 9, February 2003
Page(s) 125 - 133
Published online 15 September 2003
  1. M. Bardi and I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser, Boston (1997). [Google Scholar]
  2. G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi. Springer Verlag, Berlin (1994). [Google Scholar]
  3. P. Bauman and D. Phillips, A non-convex variational problem related to change of phase. Appl. Math. Optim. 21 (1990) 113-138. [CrossRef] [MathSciNet] [Google Scholar]
  4. P. Cardaliaguet, B. Dacorogna, W. Gangbo and N. Georgy, Geometric restrictions for the existence of viscosity solutions. Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 189-220. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Celada, Some scalar and vectorial problems in the Calculus of Variations, Ph.D. Thesis. SISSA, Trieste (1997). [Google Scholar]
  6. P. Celada and A. Cellina, Existence and non existence of solutions to a variational problem on a square. Houston J. Math. 24 (1998) 345-375. [MathSciNet] [Google Scholar]
  7. P. Celada, S. Perrotta and G. Treu, Existence of solutions for a class of non convex minimum problems. Math. Z. 228 (1998) 177-199. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Cellina, Minimizing a functional depending on ∇u and on u. Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997) 339-352. [Google Scholar]
  9. A. Cellina and S. Perrotta, On minima of radially symmetric functionals of the gradient. Nonlinear Anal. 23 (1994) 239-249. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Crasta, On the minimum problem for a class of non-coercive non-convex variational problems. SIAM J. Control Optim. 38 (1999) 237-253. [CrossRef] [MathSciNet] [Google Scholar]
  11. G. Crasta, Existence, uniqueness and qualitative properties of minima to radially symmetric non-coercive non-convex variational problems. Math. Z. 235 (2000) 569-589. [CrossRef] [MathSciNet] [Google Scholar]
  12. G. Crasta and A. Malusa, Euler-Lagrange inclusions and existence of minimizers for a class of non-coercive variational problems. J. Convex Anal. 7 (2000) 167-181. [Google Scholar]
  13. G. Crasta and A. Malusa, Non-convex minimization problems for functionals defined on vector valued functions. J. Math. Anal. Appl. 254 (2001) 538-557. [CrossRef] [MathSciNet] [Google Scholar]
  14. B. Dacorogna and P. Marcellini, Existence of minimizers for non-quasiconvex integrals. Arch. Rational Mech. Anal. 131 (1995) 359-399. [CrossRef] [MathSciNet] [Google Scholar]
  15. B. Kawohl, J. Stara and G. Wittum, Analysis and numerical studies of a problem of shape design. Arch. Rational Mech. Anal. 114 (1991) 349-363. [Google Scholar]
  16. R. Kohn and G. Strang, Optimal design and relaxation of variational problems, I, II and III. Comm. Pure Appl. Math. 39 (1976) 113-137, 139-182, 353-377. [Google Scholar]
  17. P.L. Lions, Generalized solutions of Hamilton-Jacobi equations. Pitman, London, Pitman Res. Notes Math. Ser. 69 (1982). [Google Scholar]
  18. E. Mascolo and R. Schianchi, Existence theorems for nonconvex problems J. Math. Pures Appl. 62 (1983) 349-359. [Google Scholar]
  19. R.T. Rockafellar, Convex Analysis. Princeton Univ. Press, Princeton (1970). [Google Scholar]
  20. G. Treu, An existence result for a class of non convex problems of the Calculus of Variations. J. Convex Anal. 5 (1998) 31-44. [MathSciNet] [Google Scholar]
  21. M. Vornicescu, A variational problem on subsets of Formula . Proc. Roy. Soc. Edinburg Sect. A 127 (1997) 1089-1101. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.