Free Access
Issue
ESAIM: COCV
Volume 9, March 2003
Page(s) 135 - 143
DOI https://doi.org/10.1051/cocv:2003005
Published online 15 September 2003
  1. E. Acerbi, G. Buttazzo and F. Prinari, The class of functionals which can be represented by a supremum. J. Convex Anal. 9 (to appear). [Google Scholar]
  2. L. Ambrosio, New lower semicontinuity results for integral functionals. Rend. Accad. Naz. Sci. XL 11 (1987) 1-42. [Google Scholar]
  3. G. Aronsson, Minimization problems for the functional supxF(x,f(x),f'(x)). Ark. Mat. 6 (1965) 33-53. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Aronsson, Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6 (1967) 551-561. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Aronsson, Minimization problems for the functional supxF(x,f(x),f'(x)) II. Ark. Mat. 6 (1969) 409-431. [Google Scholar]
  6. G. Aronsson, Minimization problems for the functional supxF(x,f(x),f'(x)) III. Ark. Mat. 7 (1969) 509-512. [CrossRef] [MathSciNet] [Google Scholar]
  7. E.N. Barron, R.R. Jensen and C.Y. Wang, Lower semicontinuity of L functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 495-517. [CrossRef] [MathSciNet] [Google Scholar]
  8. E.N. Barron and W. Liu, Calculus of variations in L. Appl. Math. Optim. 35 (1997) 237-263. [MathSciNet] [Google Scholar]
  9. G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Longman, Harlow, Pitman Res. Notes Math. Ser. 207 (1989). [Google Scholar]
  10. L. Carbone and C. Sbordone, Some properties of Γ-limits of integral functionals. Ann. Mat. Pura Appl. 122 (1979) 1-60. [CrossRef] [MathSciNet] [Google Scholar]
  11. G. Dal Maso, Integral representation on BV(Ω)of Γ-limits of variational integrals. Manuscripta Math. 30 (1980) 387-416. [CrossRef] [Google Scholar]
  12. E. De Giorgi, Teoremi di semicontinuità nel calcolo delle variazioni. Istituto Nazionale di Alta Matematica, Roma (1968). [Google Scholar]
  13. E. De Giorgi, G. Buttazzo and G. Dal Maso, On the lower semicontinuity of certain integral functionals. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur., Rend. 74 (1983) 274-282. [Google Scholar]
  14. G. Eisen, A counterexample for some lower semicontinuity results. Math. Z. 162 (1978) 241-243. [CrossRef] [MathSciNet] [Google Scholar]
  15. I. Fonseca and G. Leoni, Some remarks on lower semicontinuity. Indiana Univ. Math. J. 49 (2000) 617-635. [MathSciNet] [Google Scholar]
  16. I. Fonseca and G. Leoni, On lower semicontinuity and relaxation. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 519-565. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Gori, F. Maggi and P. Marcellini, On some sharp lower semicontinuity condition in L1. Differential Integral Equations (to appear). [Google Scholar]
  18. M. Gori and P. Marcellini, An extension of the Serrin's lower semicontinuity theorem. J. Convex Anal. 9 (2002) 1-28. [MathSciNet] [Google Scholar]
  19. A.D. Ioffe, On lower semicontinuity of integral functionals. SIAM J. Control Optim. 15 (1977) 521-538. [CrossRef] [Google Scholar]
  20. C.Y. Pauc, La méthode métrique en calcul des variations. Hermann, Paris (1941). [Google Scholar]
  21. J. Serrin, On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc. 101 (1961) 139-167. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.