Free Access
Volume 9, March 2003
Page(s) 135 - 143
Published online 15 September 2003
  1. E. Acerbi, G. Buttazzo and F. Prinari, The class of functionals which can be represented by a supremum. J. Convex Anal. 9 (to appear).
  2. L. Ambrosio, New lower semicontinuity results for integral functionals. Rend. Accad. Naz. Sci. XL 11 (1987) 1-42.
  3. G. Aronsson, Minimization problems for the functional supxF(x,f(x),f'(x)). Ark. Mat. 6 (1965) 33-53. [CrossRef] [MathSciNet]
  4. G. Aronsson, Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6 (1967) 551-561. [CrossRef] [MathSciNet]
  5. G. Aronsson, Minimization problems for the functional supxF(x,f(x),f'(x)) II. Ark. Mat. 6 (1969) 409-431.
  6. G. Aronsson, Minimization problems for the functional supxF(x,f(x),f'(x)) III. Ark. Mat. 7 (1969) 509-512. [CrossRef] [MathSciNet]
  7. E.N. Barron, R.R. Jensen and C.Y. Wang, Lower semicontinuity of L functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 495-517. [CrossRef] [MathSciNet]
  8. E.N. Barron and W. Liu, Calculus of variations in L. Appl. Math. Optim. 35 (1997) 237-263. [MathSciNet]
  9. G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Longman, Harlow, Pitman Res. Notes Math. Ser. 207 (1989).
  10. L. Carbone and C. Sbordone, Some properties of Γ-limits of integral functionals. Ann. Mat. Pura Appl. 122 (1979) 1-60. [CrossRef] [MathSciNet]
  11. G. Dal Maso, Integral representation on BV(Ω)of Γ-limits of variational integrals. Manuscripta Math. 30 (1980) 387-416. [CrossRef]
  12. E. De Giorgi, Teoremi di semicontinuità nel calcolo delle variazioni. Istituto Nazionale di Alta Matematica, Roma (1968).
  13. E. De Giorgi, G. Buttazzo and G. Dal Maso, On the lower semicontinuity of certain integral functionals. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur., Rend. 74 (1983) 274-282.
  14. G. Eisen, A counterexample for some lower semicontinuity results. Math. Z. 162 (1978) 241-243. [CrossRef] [MathSciNet]
  15. I. Fonseca and G. Leoni, Some remarks on lower semicontinuity. Indiana Univ. Math. J. 49 (2000) 617-635. [MathSciNet]
  16. I. Fonseca and G. Leoni, On lower semicontinuity and relaxation. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 519-565. [CrossRef] [MathSciNet]
  17. M. Gori, F. Maggi and P. Marcellini, On some sharp lower semicontinuity condition in L1. Differential Integral Equations (to appear).
  18. M. Gori and P. Marcellini, An extension of the Serrin's lower semicontinuity theorem. J. Convex Anal. 9 (2002) 1-28. [MathSciNet]
  19. A.D. Ioffe, On lower semicontinuity of integral functionals. SIAM J. Control Optim. 15 (1977) 521-538. [CrossRef]
  20. C.Y. Pauc, La méthode métrique en calcul des variations. Hermann, Paris (1941).
  21. J. Serrin, On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc. 101 (1961) 139-167. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.