Free Access
Issue
ESAIM: COCV
Volume 10, Number 1, January 2004
Page(s) 14 - 27
DOI https://doi.org/10.1051/cocv:2003036
Published online 15 February 2004
  1. E. Acerbi, G. Buttazzo and F. Prinari, On the class of functionals which can be represented by a supremum. J. Convex Anal. 9 (2002) 225-236. [MathSciNet] [Google Scholar]
  2. G. Aronsson, Minimization Problems for the Functional Formula . Ark. Mat. 6 (1965) 33-53. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Aronsson, Minimization Problems for the Functional Formula . II. Ark. Mat. 6 (1966) 409-431. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Aronsson, Extension of Functions satisfying Lipschitz conditions. Ark. Mat. 6 (1967) 551-561. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Aronsson, Minimization Problems for the Functional Formula . III. Ark. Mat. 7 (1969) 509-512. [CrossRef] [MathSciNet] [Google Scholar]
  6. E.N. Barron, Viscosity solutions and analysis in L. Nonlinear Anal. Differential Equations Control. Montreal, QC (1998) 1-60. Kluwer Acad. Publ., Dordrecht, NATO Sci. Ser. C Math. Phys. Sci. 528 (1999). [Google Scholar]
  7. E.N. Barron, R.R. Jensen and C.Y. Wang, Lower Semicontinuity of L functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 18(2001) 495-517. [CrossRef] [MathSciNet] [Google Scholar]
  8. E.N. Barron, R.R. Jensen and C.Y. Wang, The Euler equation and absolute minimizers of L functionals. Arch. Rational Mech. Anal. 157 (2001) 255-283. [CrossRef] [Google Scholar]
  9. T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as p → ∞ of Δpup = ƒ and related extremal problems, Some topics in nonlinear PDEs. Turin (1989). Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue (1991) 15-68. [Google Scholar]
  10. H. Berliocchi and J.M. Lasry, Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 (1973) 129-184. [MathSciNet] [Google Scholar]
  11. M.G. Crandal and L.C. Evans, A remark on infinity harmonic functions, in Proc. of the USA-Chile Workshop on Nonlinear Analysis. Vina del Mar-Valparaiso (2000) 123-129. Electronic. Electron. J. Differential Equations Conf. 6. Southwest Texas State Univ., San Marcos, TX (2001). [Google Scholar]
  12. M.G. Crandal, L.C. Evans and R.F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differential Equations 13 (2001) 123-139. [MathSciNet] [Google Scholar]
  13. B. Dacorogna, Direct methods in the calculus of variations. Springer-Verlag, Berlin, Appl. Math. Sci. 78 (1989). [Google Scholar]
  14. G. Dal Maso, An Introduction to Γ-Convergence. Birkhauser, Basel, Progr. in Nonlinear Differential Equations Appl. 8 (1993). [Google Scholar]
  15. G. Dal Maso and L. Modica, A general theory of variational functionals. Topics in functional analysis (1980–81) 149-221. Quaderni, Scuola Norm. Sup. Pisa, Pisa (1981). [Google Scholar]
  16. E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975) 842-850. [MathSciNet] [Google Scholar]
  17. A. Garroni, V. Nesi and M. Ponsiglione, Dielectric Breakdown: Optimal bounds. Proc. Roy. Soc. London Sect. A 457 (2001) 2317-2335. [CrossRef] [Google Scholar]
  18. M. Gori and F. Maggi, On the lower semicontinuity of supremal functional. ESAIM: COCV 9 (2003) 135. [EDP Sciences] [Google Scholar]
  19. R.R. Jensen, Uniqueness of Lipschitz Extensions: Minimizing the Sup Norm of the Gradient. Arch. Rational Mech. Anal. 123 (1993) 51-74. [CrossRef] [MathSciNet] [Google Scholar]
  20. P. Juutinen, Absolutely Minimizing Lipschitz Extensions on a metric space. An. Ac. Sc. Fenn. Mathematica 27 (2002) 57-67. [Google Scholar]
  21. D. Kinderlehrer and P. Pedregal, Characterization of Young Measures Generated by Gradients. Arch. Rational Mech. Anal. 115 (1991) 329-365. [CrossRef] [MathSciNet] [Google Scholar]
  22. D. Kinderlehrer and P. Pedregal, Gradient Young Measures Generated by Sequences in Sobolev Spaces. J. Geom. Anal. 4(1994) 59-90. [CrossRef] [MathSciNet] [Google Scholar]
  23. S. Muller, Variational models for microstructure and phase transitions. Calculus of variations and geometric evolution problems. Cetraro (1996) 85-210. Springer, Berlin, Lecture Notes in Math. 1713 (1999). [Google Scholar]
  24. P. Pedregal, Parametrized measures and variational principles. Birkhäuser Verlag, Basel, Progr. in Nonlinear Differential Equations Appl. 30 (1997). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.