Free Access
Volume 10, Number 1, January 2004
Page(s) 1 - 13
Published online 15 February 2004
  1. A.M. Bloch, P.S. Krishnaprasad, J.E. Marsden and R. Murray, Nonholonomic mechanical systems with symmetry. Arch. Rational Mech. Anal. 136 (1996) 21-99. [CrossRef] [MathSciNet]
  2. F. Bullo and R.M. Murray, Tracking for fully actuated mechanical systems: A geometric framework. Automatica 35 (1999) 17-34. [CrossRef] [MathSciNet]
  3. E. Delaleau and P.S. Pereira da Silva, Filtrations in feedback synthesis: Part I – Systems and feedbacks. Forum Math. 10 (1998) 147-174. [CrossRef] [MathSciNet]
  4. J. Descusse and C.H. Moog, Dynamic decoupling for right invertible nonlinear systems. Systems Control Lett. 8 (1988) 345-349. [CrossRef]
  5. F. Fagnani and J. Willems, Representations of symmetric linear dynamical systems. SIAM J. Control Optim. 31 (1993) 1267-1293. [CrossRef] [MathSciNet]
  6. J.W. Grizzle and S.I. Marcus, The structure of nonlinear systems possessing symmetries. IEEE Trans. Automat. Control 30 (1985) 248-258. [CrossRef] [MathSciNet]
  7. A. Isidori, Nonlinear Control Systems, 2nd Edition. Springer, New York (1989).
  8. B. Jakubczyk, Symmetries of nonlinear control systems and their symbols, in Canadian Math. Conf. Proceed., Vol. 25 (1998) 183-198.
  9. W.S. Koon and J.E. Marsden, Optimal control for holonomic and nonholonomic mechanical systems with symmetry and Lagrangian reduction. SIAM J. Control Optim. 35 (1997) 901-929. [CrossRef] [MathSciNet]
  10. J.E. Marsden and T.S. Ratiu, Introduction to Mechanics and Symmetry. Springer-Verlag, New York (1994).
  11. Ph. Martin, R. Murray and P. Rouchon, Flat systems, in Proc. of the 4th European Control Conf.. Brussels (1997) 211-264. Plenary lectures and Mini-courses.
  12. H. Nijmeijer, Right-invertibility for a class of nonlinear control systems: A geometric approach. Systems Control Lett. 7 (1986) 125-132. [CrossRef] [MathSciNet]
  13. H. Nijmeijer and A.J. van der Schaft, Nonlinear Dynamical Control Systems. Springer-Verlag (1990).
  14. P.J. Olver, Equivalence, Invariants and Symmetry. Cambridge University Press (1995).
  15. P.J. Olver, Classical Invariant Theory. Cambridge University Press (1999).
  16. W. Respondek and H. Nijmeijer, On local right-invertibility of nonlinear control system. Control Theory Adv. Tech. 4 (1988) 325-348. [MathSciNet]
  17. W. Respondek and I.A. Tall, Nonlinearizable single-input control systems do not admit stationary symmetries. Systems Control Lett. 46 (2002) 1-16. [CrossRef] [MathSciNet]
  18. P. Rouchon and J. Rudolph, Invariant tracking and stabilization: problem formulation and examples. Springer, Lecture Notes in Control and Inform. Sci. 246 (1999) 261-273.
  19. A.J. van der Schaft, Symmetries in optimal control. SIAM J. Control Optim. 25 (1987) 245-259. [CrossRef] [MathSciNet]
  20. C. Woernle, Flatness-based control of a nonholonomic mobile platform. Z. Angew. Math. Mech. 78 (1998) 43-46.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.