Free Access
Issue
ESAIM: COCV
Volume 10, Number 4, October 2004
Page(s) 505 - 525
DOI https://doi.org/10.1051/cocv:2004017
Published online 15 October 2004
  1. H. Attouch, Variational convergence for functions and operators, Applicable Mathematics Series. Pitman, London (1984). [Google Scholar]
  2. H. Attouch, D. Azé and R.J.-B. Wets, Convergence of convex-concave saddle functions; continuity properties of the Legendre-Fenchel transform with applications to convex programming and mechanics. Ann. Inst. Henri Poincaré 5 (1988) 537-572. [Google Scholar]
  3. H. Attouch and G. Beer, On the convergence of subdifferentials of convex functions. Arch. Math. 60 (1993) 389-400. [CrossRef] [MathSciNet] [Google Scholar]
  4. H. Attouch and H. Brezis, Duality for the sum of convex functions in general Banach spaces. Publications AVAMAC, Perpignan, 84-10. Av (1984). [Google Scholar]
  5. H. Attouch and R.J.-B. Wets, Quantitative stability of variational systems: II. A framework for nonlinear conditionning. IIASA working paper (1988) 88-89. [Google Scholar]
  6. H. Attouch and R. J. -B. Wets, Quantitative stability of variational systems: I. The epigraphical distance. Trans. Amer. Math. Soc. 328 (1991) 695-729. [CrossRef] [MathSciNet] [Google Scholar]
  7. D. Azé and J.-P. Penot, Operations on convergent families of sets and functions. Optimization 21 (1990) 521-534. [CrossRef] [MathSciNet] [Google Scholar]
  8. B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer, Nonlinear parametric optimization. Akademie Verlag (1982). [Google Scholar]
  9. G. Beer, Topologies on closed and closed convex sets and the Effros measurability of set valued functions, in Sém. d'Anal. Convexe, Montpellier (1991), exposé No. 2, 2.1-2.44. [Google Scholar]
  10. G. Beer, The slice topology: A viable alternative to Mosco convergence in nonreflexive spaces. Nonlinear. Anal. Theo. Meth. Appl. 19 (1992) 271-290. [CrossRef] [Google Scholar]
  11. G. Beer and J. Borwein, Mosco convergence and reflexivity. Proc. Amer. Math. Soc. 109 (1990) 427-436. [CrossRef] [MathSciNet] [Google Scholar]
  12. G. Beer and R. Lucchetti, Convex optimization and the epi-distance topology. Trans. Amer. Math. Soc. 327 (1991) 795-813. [CrossRef] [MathSciNet] [Google Scholar]
  13. G. Beer and R. Lucchetti, The epi-distance topology: Continuity and stability results with applications to convex optimization problems. Math. Oper. Res. 17 (1992) 715-726. [CrossRef] [MathSciNet] [Google Scholar]
  14. G. Beer and R. Lucchetti, Weak topologies for the closed subsets of a metrizable space. Trans. Amer. Math. Soc. 335 (1993) 805-822. [Google Scholar]
  15. N. Bourbaki, Espaces vectoriels topologiques. Masson, Paris (1981). [Google Scholar]
  16. H. Brezis, Analyse fonctionnelle, théorie et applications. Masson, Paris (1983). [Google Scholar]
  17. C. Castaing and M. Valadier, Convex analysis and measurable multifunctions. Lect. Notes Math. 580 (1977). [Google Scholar]
  18. J. Dieudonné, Sur la séparation des ensembles convexes. Math. Annal. 163 (1966) 1-3. [CrossRef] [Google Scholar]
  19. S. Dolecki, G. Salinetti and R.J.-B. Wets, Convergence of functions: equi-semicontinuity. Trans. Amer. Math. Soc. 276 (1983) 409-429. [Google Scholar]
  20. A.L. Dontchev and T. Zolezzi, Well-posed optimization problems. Lect. Notes Math. 1543 (1993). [Google Scholar]
  21. I. Ekeland et R. Temam, Analyse convexe et problèmes variationnels. Dunod, Paris (1974). [Google Scholar]
  22. K. El Hajioui, Convergences variationnelles: approximations inf-convolutives généralisées, stabilité et optimisation dans les espaces non réflexifs. Thèse de Doctorat, Université Ibn Tofail, Kénitra (2002). [Google Scholar]
  23. K. El Hajioui et D. Mentagui, Sur la stabilité d'une convergence variationnelle dans les espaces de Banach généraux, en préparation. [Google Scholar]
  24. J. Hadamard, Sur les problèmes aux dérivées partielles et leur signification physique. Publ. Univ. Princeton 13 (1902) 49-52. [Google Scholar]
  25. J. Hadamard, Lectures on Cauchy's problem in linear partial differential equations. Dover (1953). [Google Scholar]
  26. J.L. Joly, Une famille de topologies et de convergences sur l'ensemble des fonctionnelles convexes. Thèse Grenoble (1970). [Google Scholar]
  27. G. Köthe, Topological vector spaces (I, II). Springer (1969, 1979). [Google Scholar]
  28. J. Lahrache, Stabilité et convergences dans les espaces non réflexifs, in Sém. d'Anal. Convexe Montpellier, exposé No. 10 (1991). [Google Scholar]
  29. P.J. Laurent, Approximation et optimisation. Hermann, Paris (1972). [Google Scholar]
  30. L. Mclinden and R.C. Bergstrom, Preservation of convergence of convex sets and functions in finite dimensions. Trans. Amer. Math. Soc. 286 (1981) 127-142. [CrossRef] [MathSciNet] [Google Scholar]
  31. D. Mentagui, Inf-convolution polaire, stabilité de l'épi-convergence et estimation de la rapidité de convergence d'une suite de compacts. Thèse Rabat (1988). [Google Scholar]
  32. D. Mentagui, Problèmes d'optimisation biens posés et convergences variationnelles. Théorie et applications dans le cadre de l'optimisation non différentiable. Thèse d'État, F.U.N.D.P., Namur (1996). [Google Scholar]
  33. D. Mentagui, Caractérisation de la stabilité d'un problème de minimisation associé à une fonction de perturbation particulière. Pub. Inst. Math. 60 (1996) 65-74. [Google Scholar]
  34. D. Mentagui, Analyse de récession et résultats de stabilité d'une convergence variationnelle. Application à la théorie de la dualité en programmation mathématique. ESAIM: COCV 9 (2003) 297-315. [EDP Sciences] [Google Scholar]
  35. D. Mentagui et K. El Hajioui, Convergences des fonctions convexes et approximations inf-convolutives généralisées. Publ. Inst. Math., Nouvelle série 86 (2002) 123-136. [Google Scholar]
  36. J.J. Moreau, Fonctionnelles convexes. Sém. sur les E.D.P. collège de France, Paris (1967). [Google Scholar]
  37. U. Mosco, Approximation of the solutions of some variational inequalities. Ann. Scuola Normale Sup. Pisa 21 (1967) 373-394. [Google Scholar]
  38. U. Mosco, On the continuity of the Young-Fenchel transform. J. Math. Anal. Appl. 25 (1971) 518-535. [CrossRef] [MathSciNet] [Google Scholar]
  39. R. Phelps, Convex functions, monotone operators and differentiability. Lect. Notes Math. 1364 (1989). [Google Scholar]
  40. H. Radström, An imbedding theorem for spaces of convex sets. Proc. Amer. Math. Soc. 3 (1952) 165-169. [CrossRef] [MathSciNet] [Google Scholar]
  41. R.T. Rockafellar, Convex Analysis. Princeton Univ. Press (1970). [Google Scholar]
  42. R.T. Rockafellar and R.J.-B. Wets, Variational analysis. Springer (1998). [Google Scholar]
  43. Y. Sonntag and C. Zalinescu, Set convergences: An attempt of classification, in Proc. of Intl. Conf. on Diff. Equations and Control theory, Iasi, Romania, August (1990) 199-226. [Google Scholar]
  44. A.N. Tikhonov, Stability of inverse problems. Dokl. Akad. Nauk. USSR 39 (1943) 176-179. [Google Scholar]
  45. A.N. Tikhonov, Solution of incorrectly formulated problems and the regularization methods. Soviet Math. Dokl. 4 (1963) 1035-1038. [Google Scholar]
  46. A.N. Tikhonov, Methods for the regularization of optimal control problems. Soviet Math. Dokl. 6 (1965) 761-763. [Google Scholar]
  47. A.N. Tikhonov and V. Arsenine, Methods for solving ill-posed problems. Nauka (1986). [Google Scholar]
  48. R.J.-B. Wets, A formula for the level sets of epi-limits and some applications, Mathematical theories of optimization, J.P. Cecconi and T. Zolezzi Eds., Lect. Notes Math. 983 (1983). [Google Scholar]
  49. R.A. Wijsman, Convergence of sequences of convex sets, cones and functions. Bull. Amer. Math. Soc. 70 (1964) 186-188. [CrossRef] [MathSciNet] [Google Scholar]
  50. R.A. Wijsman, Convergence of sequences of convex sets, cones and functions II. Trans. Amer. Math. Soc. 123 (1966) 32-45. [CrossRef] [MathSciNet] [Google Scholar]
  51. T. Zolezzi, On stability in mathematical programming. Math. Programming 21 (1984) 227-242. [Google Scholar]
  52. T. Zolezzi, Continuity of generalized gradients and multipliers under perturbations. Math. Oper. Res. 10 (1985) 664-673. [CrossRef] [MathSciNet] [Google Scholar]
  53. T. Zolezzi, Stability analysis in optimization. Lect. Notes Math. 1990 (1986) 397-419. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.