Free Access
Volume 10, Number 4, October 2004
Page(s) 666 - 676
Published online 15 October 2004
  1. P. Albano and P. Cannarsa, Propagation of singularities for solutions of nonlinear first order partial differential equations. Arch. Ration. Mech. Anal. 162 (2002) 1-23. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Bardi and I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi equations. Birkhäuser, Boston (1997). [Google Scholar]
  3. P. Cannarsa and H. Frankowska, Some characterizations of optimal trajectories in control theory. SIAM J. Control Optim. 29 (1991) 1322-1347. [CrossRef] [MathSciNet] [Google Scholar]
  4. P. Cannarsa, C. Pignotti and C. Sinestrari, Semiconcavity for optimal control problems with exit time. Discrete Contin. Dyn. Syst. 6 (2000) 975-997. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Cannarsa and C. Sinestrari, Convexity properties of the minimum time function. Calc. Var. 3 (1995) 273-298. [Google Scholar]
  6. P. Cannarsa and C. Sinestrari, On a class of nonlinear time optimal control problems. Discrete Contin. Dyn. Syst. 1 (1995) 285-300. [CrossRef] [Google Scholar]
  7. P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations and optimal control. Birkhäuser, Boston (2004). [Google Scholar]
  8. P. Cannarsa and H.M. Soner, Generalized one-sided estimates for solutions of Hamilton-Jacobi equations and applications. Nonlinear Anal. 13 (1989) 305-323. [CrossRef] [MathSciNet] [Google Scholar]
  9. P. Cannarsa and M. E. Tessitore, On the behaviour of the value function of a Mayer optimal control problem along optimal trajectories, in Control and estimation of distributed parameter systems (Vorau, 1996). Internat. Ser. Numer. Math. 126 81-88 (1998). [Google Scholar]
  10. F.H. Clarke and R.B. Vinter, The relationship between the maximum principle and dynamic programming. SIAM J. Control Optim. 25 (1987) 1291-1311. [CrossRef] [MathSciNet] [Google Scholar]
  11. W.H. Fleming, The Cauchy problem for a nonlinear first order partial differential equation. J. Diff. Eq. 5 (1969) 515-530. [CrossRef] [Google Scholar]
  12. N.N. Kuznetzov and A.A. Siskin, On a many dimensional problem in the theory of quasilinear equations. Z. Vycisl. Mat. i Mat. Fiz. 4 (1964) 192-205. [Google Scholar]
  13. P.L. Lions, Generalized solutions of Hamilton-Jacobi equations. Pitman, Boston (1982). [Google Scholar]
  14. R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton (1970). [Google Scholar]
  15. X.Y. Zhou, Maximum principle, dynamic programming and their connection in deterministic control. J. Optim. Theory Appl. 65 (1990) 363-373. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.