Free Access
Issue
ESAIM: COCV
Volume 11, Number 1, January 2005
Page(s) 102 - 121
DOI https://doi.org/10.1051/cocv:2004029
Published online 15 December 2004
  1. A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structure. North-Holland (1978). [Google Scholar]
  2. B. Burgdorfer, The influence of the molecular mean free path on the performance of hydrodynamic gas lubricated bearings. ASME J. basic Engineer. 81 (1959) 99–100. [Google Scholar]
  3. M. Chipot and M. Luskin, Existence and uniqueness of solutions to the compressible Reynolds lubrication equation. SIAM J. Math. Anal. 17 (1986) 1390–1399. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.I. Diaz and J.I. Tello, On a problem lacking a classical solution in lubrication theory, in Actas del XV-CEDYA, Vigo II (1997) 429–434. [Google Scholar]
  5. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. Stud. Adv. Math. CRC Press (1992). [Google Scholar]
  6. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Berlin, second edition (1983). [Google Scholar]
  7. B.S. Grigor'ev, S.V. Lupulyak and Yu.K. Shinder, Solvability of the reynolds equation of gas lubrication. J. Math. Sci. 106 (2001) 2925–2928. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Jai, Existence and uniqueness of solutions of the parabolic nonlinear compressible Reynolds lubrication equation. Nonlinear Anal. 43 (2001) 655–682. [CrossRef] [MathSciNet] [Google Scholar]
  9. D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1980). [Google Scholar]
  10. L. Rayleigh, Notes on the Theory of Lubrication. Phylosophical Magazine 35 (1918) 1–12. [Google Scholar]
  11. M.P. Robert, Optimization of self-acting gas bearings for maximum static siffness. ASME J. Appl. Mech. 57 (1990) 758–761. [CrossRef] [Google Scholar]
  12. S.M. Rodhe and G.T. McAllister, On the optimization of fluid film bearings. Proc. Roy. Soc. London A 351 (1976) 481–497. [Google Scholar]
  13. J. I. Tello, Regularity of solutions to a lubrication problem with discontinuous separation data. Nonlinear Anal. 53 (2003) 1167–1177. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.