Free Access
Issue
ESAIM: COCV
Volume 11, Number 4, October 2005
Page(s) 673 - 690
DOI https://doi.org/10.1051/cocv:2005025
Published online 15 September 2005
  1. G. Allaire, Shape optimization by the homogenization method. Springer-Verlag, New York (2002). [Google Scholar]
  2. H.T. Banks, R.C. Smith and Y. Wang, Smart material structures, modelling, estimation and control. Res. Appl. Math. Masson, Paris (1996). [Google Scholar]
  3. D. Chenais and E. Zuazua, Finite Element Approximation on Elliptic Optimal Design. C.R. Acad. Sci. Paris Ser. I 338 729–734 (2004). [Google Scholar]
  4. M.J. Chen and C.A. Desoer, Necessary and sufficient conditions for robust stability of linear distributed feedback systems. Internat. J. Control 35 (1982) 255–267. [CrossRef] [MathSciNet] [Google Scholar]
  5. R.F. Curtain and B. Van Keulen, Robust control with respect to coprime factors of infinite-dimensional positive real systems. IEEE Trans. Autom. Control 37 (1992) 868–871. [CrossRef] [Google Scholar]
  6. R.F. Curtain and B. Van Keulen, Equivalence of input-output stability and exponential stability for infinite dimensional systems. J. Math. Syst. Theory 21 (1988) 19–48. [Google Scholar]
  7. R.F. Curtain, A synthesis of Time and Frequency domain methods for the control of infinite dimensional systems: a system theoretic approach, in Control and Estimation in Distributed Parameter Systems, H.T. Banks Ed. SIAM (1988) 171–224. [Google Scholar]
  8. R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J. Control Optim. 26 (1988) 697–713. [CrossRef] [MathSciNet] [Google Scholar]
  9. E. Degryse, Étude d'une nouvelle approche pour la conception de capteurs et d'actionneurs pour le contrôle des systèmes flexibles abstraits. Ph.D. Thesis, Université de Technologie de Compiègne, France (2002). [Google Scholar]
  10. P.H. Destuynder, I. Legrain, L. Castel and N. Richard, Theoretical, numerical and experimental discussion on the use of piezoelectric devices for control-structure interaction. Eur. J. Mech A/solids 11 (1992) 181–213. [Google Scholar]
  11. B.A. Francis, A Course in H Control Theory. Lecture notes in control and information sciences. Springer-Verlag Berlin (1988). [Google Scholar]
  12. P. Freitas and E. Zuazua, Stability results for the wave equation with indefinite damping. J. Diff. Equations 132 (1996) 338–352. [Google Scholar]
  13. J.S. Freudenberg and P.D. Looze, Right half plane poles and zeros and design tradeoffs in feedback systems. IEEE Trans. Autom. Control 30 (1985) 555–565. [CrossRef] [Google Scholar]
  14. J.S. Gibson and A. Adamian, Approximation theory for Linear-Quadratic-Gaussian control of flexible structures. SIAM J. Control Optim. 29 (1991) 1–37. [Google Scholar]
  15. A. Haraux, Systèmes dynamiques dissipatifs et applications. Masson, Paris (1990). [Google Scholar]
  16. P. Hébrard and A. Henrot, Optimal shape and position of the actuators for the stabilization of a string. Syst. Control Lett. 48 (2003) 199–209. [CrossRef] [Google Scholar]
  17. P. Hébrard and A. Henrot, A spillover phenomenon in the optimal location of actuators. SIAM J. Control Optim., to appear. [Google Scholar]
  18. C. Inniss and T. Williams, Sensitivity of the zeros of flexible structures to sensor and actuator location. IEEE Trans. Autom. Control 45 (2000) 157–160. [CrossRef] [Google Scholar]
  19. S. Jaffard, M. Tucsnak and E. Zuazua, Singular internal stabilization of the wave equation. J. Differential Equations 145 (1998) 184–215. [CrossRef] [MathSciNet] [Google Scholar]
  20. T. Kato, Perturbation theory for linear operators. Springer-Verlag, Berlin (1980). [Google Scholar]
  21. B. van Keulen, H control for distributed parameter systems: a state-space approach. Birkaüser, Boston (1993). [Google Scholar]
  22. I. Lasiecka and R. Triggiani, Non-dissipative boundary stabilization of the wave equation via boundary observation. J. Math. Pures Appl. 63 (1984) 59–80. [MathSciNet] [Google Scholar]
  23. D.G. Luenberger, Optimization by Vector Space Methods. John Wiley and Sons, New York (1969). [Google Scholar]
  24. F. Macia and E. Zuazua, On the lack of controllability of wave equations: a Gaussian beam approach. Asymptotic Analysis 32 (2002) 1–26. [MathSciNet] [Google Scholar]
  25. M. Minoux, Programmation Mathématique: théorie et algorithmes, tome 2. Dunod, Paris (1983). [Google Scholar]
  26. O. Morgül, Dynamic boundary control of an Euler-Bernoulli beam. IEEE Trans. Autom. Control 37 (1992) 639–642. [CrossRef] [Google Scholar]
  27. S. Mottelet, Controllability and stabilization of a canal with wave generators. SIAM J. Control Optim. 38 (2000) 711–735. [CrossRef] [MathSciNet] [Google Scholar]
  28. V.M. Popov, Hyperstability of Automatic Control Systems. Springer, New York (1973). [Google Scholar]
  29. F. Shimizu and S. Hara, A method of structure/control design Integration based on finite frequency conditions and its application to smart arm structure design, Proc. of SICE 2002, Osaka, (August 2002). [Google Scholar]
  30. V.A. Spector and H. Flashner, Sensitivity of structural models for non collocated control systems. Trans. ASME 111 (1989) 646–655. [Google Scholar]
  31. M. Tucsnak and S. Jaffard, Regularity of plate equations with control concentrated in interior curves. Proc. Roy. Soc. Edinburg A 127 (1997) 1005–1025. [Google Scholar]
  32. Y. Zhang, Solving Large-Scale Linear Programs by Interior-Point Methods Under the MATLAB Environment. Technical Report TR96-01, Department of Mathematics and Statistics, University of Maryland, Baltimore, MD (July 1995). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.