Free Access
Issue
ESAIM: COCV
Volume 11, Number 4, October 2005
Page(s) 614 - 632
DOI https://doi.org/10.1051/cocv:2005020
Published online 15 September 2005
  1. K.E. Brenen, S.L. Campbell and L.R. Petzold, Numerical Solution of Initial-Value Problems in Differential Algebraic Equations. Classics Appl. Math. SIAM, Philadelphia (1996). [Google Scholar]
  2. F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley, New York (1983). Reprinted as Vol. 5 of Classics Appl. Math. SIAM, Philadelphia (1990). [Google Scholar]
  3. M.d.R. de Pinho, M.M.A. Ferreira and F.A.C.C. Fontes, An Euler-Lagrange inclusion for optimal control problems with state constraints. J. Dynam. Control Syst. 8 (2002) 23–45. [Google Scholar]
  4. M.d.R. de Pinho, M.M.A. Ferreira and F.A.C.C. Fontes, Necessary conditions in Euler-Lagrange inclusion form for constrained nonconvex optimal control problems, in Proc. of the 10th Mediterranean Conference on Control and Automation. Lisbon, Portugal (2002). [Google Scholar]
  5. M.d.R. de Pinho and A. Ilchmann, Weak maximum principle for optimal control problems with mixed constraints. Nonlinear Anal. Theory Appl. 48 (2002) 1179–1196. [CrossRef] [Google Scholar]
  6. M.d.R. de Pinho and R.B. Vinter, An Euler-Lagrange inclusion for optimal control problems. IEEE Trans. Aut. Control 40 (1995) 1191–1198. [Google Scholar]
  7. M.d.R. de Pinho and R.B. Vinter, Necessary conditions for optimal control problems involving nonlinear differential algebraic equations. J. Math. Anal. Appl. 212 (1997) 493–516. [CrossRef] [MathSciNet] [Google Scholar]
  8. M.d.R. de Pinho, R.B. Vinter and H. Zheng, A maximum principle for optimal control problems with mixed constraints. IMA J. Math. Control Inform. 18 (2001) 189–205. [CrossRef] [MathSciNet] [Google Scholar]
  9. B.S. Mordukhovich, Maximum principle in problems of time optimal control with nonsmooth constraints. J. Appl. Math. Mech. 40 (1976) 960–969. [CrossRef] [MathSciNet] [Google Scholar]
  10. B.S. Mordukhovich, Approximation Methods in Problems of Optimization and Control. Nakua, Moscow; the 2nd edition to appear in Wiley-Interscience (1988). [Google Scholar]
  11. R.T. Rockafellar and B. Wets, Variational Analysis. Springer, Berlin (1998). [Google Scholar]
  12. R.B. Vinter, Optimal Control. Birkhauser, Boston (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.