Free Access
Issue
ESAIM: COCV
Volume 11, Number 4, October 2005
Page(s) 595 - 613
DOI https://doi.org/10.1051/cocv:2005022
Published online 15 September 2005
  1. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math. 12 (1959) 623–727. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Beckmann, A continuous model of transportation. Econometrica 20 (1952) 643–660. [Google Scholar]
  3. M. Beckmann and T. Puu, Spatial Economics: Density, Potential and Flow. North-Holland, Amsterdam (1985). [Google Scholar]
  4. H. Brezis, Analyse Fonctionnelle. Masson Editeur, Paris (1983). [Google Scholar]
  5. G. Buttazzo and F. Santambrogio, A model for the optimal planning of an urban area. Preprint available at cvgmt.sns.it (2003). To appear in SIAM J. Math. Anal. [Google Scholar]
  6. G. Buttazzo and E. Stepanov, Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003) 631–678. [Google Scholar]
  7. L. De Pascale and A. Pratelli, Regularity properties for Monge transport density and for solutions of some shape optimization problem. Calc. Var. Partial Differ. Equ. 14 (2002) 249–274. [Google Scholar]
  8. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (1977). [Google Scholar]
  9. R.J. McCann, A convexity principle for interacting gases. Adv. Math. 128 (1997) 153–159. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Santambrogio, Misure ottime per costi di trasporto e funzionali locali (in italian), Laurea Thesis, Università di Pisa, advisor: G. Buttazzo, available at www.unipi.it/etd and cvgmt.sns.it (2003). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.