Free Access
Volume 11, Number 4, October 2005
Page(s) 574 - 594
Published online 15 September 2005
  1. M. Bounkhel, L. Tadj and A. Hamdi, Iterative Schemes to Solve Non convex Variational Problems. J. Ineq. Pure Appl. Math. 4 (2003), Article 14. [Google Scholar]
  2. M. Bounkhel and L. Thibault, On various notions of regularity of sets in non smooth analysis. Nonlinear Anal. Theory Methods Appl. 48 (2002) 223–246. [Google Scholar]
  3. M. Bounkhel and L. Thibault, Further characterizations of regular sets in Hilbert spaces and their applications to nonconvex sweeping process. Preprint, Centro de Modelamiento Matematico (CMM), Universidad de Chile (2000). Submitted to J. Nonlinear Convex Anal. [Google Scholar]
  4. C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions. Lect. Notes Math. 580 (1977). [Google Scholar]
  5. Y.J. Cho, Z. He, Y.F. Cao and N.J. Huang, On the generalized strongly nonlinear implicit quasivariational inequalities for set-valued mappings. J. Ineq. Pure Appl. Math. 1 (2000), Article 15. [Google Scholar]
  6. F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983). [Google Scholar]
  7. F.H. Clarke, R.J. Stern and P.R. Wolenski, Proximal smoothness and the lower C2-property. J. Convex Anal. 2 (1995) 117–144. [MathSciNet] [Google Scholar]
  8. F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer-Verlag, New York (1998). [Google Scholar]
  9. M.A. Noor, General algorithm for variational inequalities. J. Optim. Theory Appl. 73 (1992) 409–413. [CrossRef] [MathSciNet] [Google Scholar]
  10. P.D. Panagiotopoulos and G.E. Stavroulakis, New types of variational principles based on the notion of quasidifferentiability. Acta Mech. 94 (1992) 171–194. [CrossRef] [MathSciNet] [Google Scholar]
  11. R.A. Poliquin, R.T. Rockafellar and L. Thibault, Local differentiability of distance functions. Trans. Amer. Math. Soc. 352 (2000) 5231–5249. [CrossRef] [MathSciNet] [Google Scholar]
  12. R.T. Rockafellar and R. Wets, Variational Analysis. Springer-Verlag, Berlin (1998). [Google Scholar]
  13. G. Stampacchia, Formes bilin 'eaires coercives sur les ensembles convexes. C. R. Acad. Sci. Paris 258 (1964) 4413–4416. [MathSciNet] [Google Scholar]
  14. L.C. Zeng, On a general projection algorithm for variational inequalities. J. Optim. Theory Appl. 97 (1998) 229–235. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.