Free Access
Issue
ESAIM: COCV
Volume 11, Number 4, October 2005
Page(s) 542 - 573
DOI https://doi.org/10.1051/cocv:2005018
Published online 15 September 2005
  1. G. Allaire, Homogenization and two scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. [Google Scholar]
  2. G. Allaire and C. Conca, Bloch wave homogenization for a spectral problem in fluid-solid structures. Arch. Rational Mech. Anal. 135 (1996) 197–257. [Google Scholar]
  3. G. Allaire and C. Conca, Boundary layers in the homogenization of a spectral problem in fluid-solid structures. SIAM J. Math. Anal. 29 (1997) 343–379. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North Holland, Amsterdam (1978). [Google Scholar]
  5. C. Conca, S. Natesan and M. Vanninathan, Numerical solution of elliptic partial differential equations by Bloch waves method, XVII CEDYA: Congress on differential equations and applications/VII CMA: Congress on applied mathematics, Dep. Mat. Appl., Univ. Salamanca, Salamanca (2001) 63–83. [Google Scholar]
  6. C. Conca, R. Orive and M. Vanninathan, Bloch approximation in homogenization and applications. SIAM J. Math. Anal. 33 (2002) 1166–1198. [CrossRef] [MathSciNet] [Google Scholar]
  7. C. Conca, J. Planchard and M. Vanninathan, Fluids and periodic structures. John Wiley & Sons, New York, and Masson, Paris (1995). [Google Scholar]
  8. C. Conca and M. Vanninathan, Homogenization of periodic structures via Bloch decomposition. SIAM J. Appl. Math. 57 (1997) 1639–1659. [CrossRef] [MathSciNet] [Google Scholar]
  9. C. Conca and M. Vanninathan, Fourier approach to homogenization. ESAIM: COCV 8 (2002) 489–511. [CrossRef] [EDP Sciences] [Google Scholar]
  10. A.P. Cracknell and K.C. Wong, The Fermi surface. Clarendon press, Oxford (1973). [Google Scholar]
  11. G. Dal maso, An introduction to Γ-convergence. Birkhäuser, Boston (1993). [Google Scholar]
  12. P. Gérard, Microlocal defect measures. Commun. PDE 16 (1991) 1761–1794. [CrossRef] [Google Scholar]
  13. P. Gérard, P.A. Markowich, N.J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms. Comm. Pure Appl. Math. 50 (1997) 323–379. [CrossRef] [MathSciNet] [Google Scholar]
  14. V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential operators and Integral functionals. Berlin, Springer-Verlag (1994). [Google Scholar]
  15. T. Kato, Perturbation theory for linear operators. 2nd edition, Springer-Verlag, Berlin (1980). [Google Scholar]
  16. F. Murat and L. Tartar, H-Convergence, Topics in the Mathematical Modeling of Composite Materials, A. Charkaev and R. Kohn Eds. PNLDE 31, Birkhäuser, Boston (1997). [Google Scholar]
  17. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. [CrossRef] [MathSciNet] [Google Scholar]
  18. O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, Mathematical problems in elasticity and homogenization. North Holland, Amsterdam (1992). [Google Scholar]
  19. F. Rellich, Perturbation theory of eigenvalue problems. Gordon and Breach science publishers, New York (1969). [Google Scholar]
  20. M. Roseau, Vibrations in Mechanical systems: Analytical methods and applications. Springer-Verlag, Berlin (1987). [Google Scholar]
  21. W. Rudin, Functional analysis. 2nd edition, Mc-Graw Hill, New York (1991). [Google Scholar]
  22. J. Sínchez-Hubert and E. Sínchez-Palencia, Vibration and coupling of continuous systems: asymptotic methods. Springer-Verlag, Berlin (1989). [Google Scholar]
  23. E. Sínchez-Palencia, Non-homogeneous media and vibration theory. Lect. Notes Phys. 127 (1980). [Google Scholar]
  24. F. Santosa and W.W. Symes, A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math. 51 (1991) 984–1005. [CrossRef] [MathSciNet] [Google Scholar]
  25. S. Sivaji Ganesh and M. Vanninathan, Bloch wave homogenization of scalar elliptic operators. Asymptotic Analysis 39 (2004) 15–44. [MathSciNet] [Google Scholar]
  26. L. Tartar, H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edin. Sect. A 115 (1990) 193–230. [Google Scholar]
  27. N. Turbé, Applications of Bloch decomposition to periodic elastic and viscoelastic media. Math. Meth. Appl. Sci. 4 (1982) 433–449. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.