Free Access
Issue
ESAIM: COCV
Volume 12, Number 1, January 2006
Page(s) 1 - 11
DOI https://doi.org/10.1051/cocv:2005026
Published online 15 December 2005
  1. J.T. Betts, Survey of numerical methods for trajectory optimization. Journal of Guidance, Control and Dynamics 21 (1998) 193–207. [Google Scholar]
  2. W.M. Boothby, An introduction to Differential Geometry and Riemannian Manifolds. Academic Press (1975). [Google Scholar]
  3. P. Crouch, M. Camarinha and F. Silva Leite, Hamiltonian approach for a second order variational problem on a Riemannian manifold, in Proc. of CONTROLO'98, 3rd Portuguese Conference on Automatic Control (September 1998) 321–326. [Google Scholar]
  4. P. Crouch, F. Silva Leite and M. Camarinha, Hamiltonian structure of generalized cubic polynomials, in Proc. of the IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (2000) 13–18. [Google Scholar]
  5. P. Crouch, F. Silva Liete and M. Camarinha, A second order Riemannian varational problem from a Hamiltonian perspective. Private Communication (2001). [Google Scholar]
  6. T. Frankel, The Geometry of Physics: An Introduction. Cambridge University Press (1998). [Google Scholar]
  7. R. Holsapple, R. Venkataraman and D. Doman, A modified simple shooting method for solving two point boundary value problems, in Proc. of the IEEE Aerospace Conference, Big Sky, MT (March 2003). [Google Scholar]
  8. R. Holsapple, R. Venkataraman and D. Doman, A new, fast numerical method for solving two-point boundary value problems. J. Guidance Control Dyn. 27 (2004) 301–303. [CrossRef] [Google Scholar]
  9. V. Jurdejevic, Geometric Control Theory. Cambridge Studies in Advanced Mathematics (1997). [Google Scholar]
  10. P.S. Krishnaprasad, Optimal control and Poisson reduction. TR 93–87, Institute for Systems Research, University of Maryland, (1993). [Google Scholar]
  11. A. Lewis, The geometry of the maximum principle for affine connection control systems. Preprint, available online at http://penelope.mast.queensu.ca/~andrew/cgibin/pslist.cgi?papers.db, 2000. [Google Scholar]
  12. D.G. Luenberger, Optimization by Vector Space Methods. John Wiley and Sons (1969). [Google Scholar]
  13. M.B. Milam, K. Mushambi and R.M. Murray, A new computational approach to real-time trajectory generation for constrained mechanical systems, in Proc. of 39th IEEE Conference on Decision and Control 1 (2000) 845–851. [Google Scholar]
  14. R.M. Murray, Z. Li and S.S. Sastry, A Mathematical Introduction to Robotic Manipulation. CRC Press (1994). [Google Scholar]
  15. L. Noakes, G. Heinzinger and B. Paden, Cubic splines on curved spaces. IMA J. Math. Control Inform. 6 (1989) 465–473. [CrossRef] [MathSciNet] [Google Scholar]
  16. H.J. Pesch, Real-time computation of feedback controls for constrained optimal control problems. Part 1: Neighbouring extremals. Optim. Control Appl. Methods 10 (1989) 129–145. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  17. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, pp. 272–286; 502–535. Springer-Verlag, New York, second edition (1993). [Google Scholar]
  18. H. Sussmann, An introduction to the coordinate-free maximum principle, in Geometry of Feedback and Optimal Control, B. Jakubczyk and W. Respondek Eds. Marcel Dekker, New York (1997) 463–557. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.