Free Access
Volume 12, Number 4, October 2006
Page(s) 636 - 661
Published online 11 October 2006
  1. M. Asch and G. Lebeau, The spectrum of the damped wave operator for a bounded domain in Formula . Experiment. Math. 12 (2003) 227–241. [MathSciNet] [Google Scholar]
  2. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. [Google Scholar]
  3. A. Benaddi and B. Rao, Energy decay rate of wave equations with infinite damping. J. Diff. Equ. 161 (2000) 337–357. [Google Scholar]
  4. C. Carlos and S. Cox, Achieving arbitrarily large decay in the damped wave equation. SIAM J. Control Optim. 39 (2001) 1748–1755. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Chambert-Loir, S. Fermigier and V. Maillot, Exercices de mathématiques pour l'agrégation. Analyse I. Masson (1995). [Google Scholar]
  6. S. Cox and E. Zuazua, The rate at which energy decays in a damping string. Comm. Partial Diff. Equ. 19 (1994) 213–243. [Google Scholar]
  7. P. Hébrard, Étude de la géométrie optimale des zones de contrôle dans des problèmes de stabilisation. Ph.D. Thesis, University of Nancy 1 (2002). [Google Scholar]
  8. P. Hébrard and A. Henrot, Optimal shape and position of the actuators for the stabilization of a string. Syst. Control Lett. 48 (2003) 119–209. [Google Scholar]
  9. G. Lebeau, Équation des ondes amorties, in Algebraic and Geometric Methods in Mathematical Physics. Kluwer Acad. Publ., Math. Phys. Stud. 19 (1996) 73–109. [Google Scholar]
  10. J. Rauch and M. Taylor, Decay of solutions to nondissipative hyperbolic systems on compact manifolds. Comm. Pure Appl. Math. 28 (1975) 501–523. [CrossRef] [MathSciNet] [Google Scholar]
  11. J. Sjostrand, Asymptotic distribution of eigenfrequencies for damped wave equations. Publ. Res. Inst. Sci. 36 (2000) 573–611. [CrossRef] [Google Scholar]
  12. S. Tabachnikov, Billiards mathématiques. SMF collection Panoramas et synthèses (1995). [Google Scholar]
  13. E. Zuazua, Exponential decay for the semilinear wave equation with localized damping. Comm. Partial Equ. 15 (1990) 205–235. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.