Free Access
Volume 12, Number 4, October 2006
Page(s) 615 - 635
Published online 11 October 2006
  1. F.Kh. Abdullaev and J. Garnier, Collective oscillations of one-dimensional Bose-Einstein gas under varying in time trap potential and atomic scattering length. Phys. Rev. A 70 (2004) 053604. [CrossRef] [Google Scholar]
  2. G. Bachman and N. Narici, Functional Analysis. Academic Press, N.Y. (1966). [Google Scholar]
  3. J. Ball, J. Marsden and M. Slemrod, Controllability for distributed bilinear systems. SIAM J. Contr. Opt. 20 (1982) 575-597. [Google Scholar]
  4. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Contr. Opt. 30 (1992) 1024-1065. [CrossRef] [Google Scholar]
  5. L. Baudouin, A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics. Portugaliae Mat. (To appear). [Google Scholar]
  6. L. Baudouin, Existence and regularity of the solution of a time dependent Hartree-Fock equation coupled with a classical nuclear dynamics. Rev. Mat. Complut. 18 (2005) 285-314. [MathSciNet] [Google Scholar]
  7. L. Baudouin and J.-P. Puel, Bilinear optimal control problem on a Schrödinger equation with singular potentials. Preprint (2004). [Google Scholar]
  8. K. Beauchard, Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl. 84 (2005) 851-956. [Google Scholar]
  9. K. Beauchard and J.M. Coron, Controllability of a quantum particle in a moving potential well. J. Funct. Anal. 232 (2006) 328-389. [CrossRef] [MathSciNet] [Google Scholar]
  10. P.W. Brumer and M. Shapiro, Principles of the Quantum Control of Molecular Processes. Wiley-VCH, Berlin (2003). [Google Scholar]
  11. R. Carles, Linear vs. nonlinear effects for nonlinear Schrödinger equations with potential. Commun. Contemp. Math. 7(4) (2005) 483-508. [Google Scholar]
  12. E. Cancès and C. LeBris, On the time-dependent Hartree-Fock equations coupled with classical nuclear dynamics. Math. Mod. Meth. Appl. Sci. 9 (1999) 963-990. [CrossRef] [Google Scholar]
  13. E. Cancès, C. LeBris and M. Pilot, Contrôle optimale bilinéaire d'une équation de Schrödinger. C. R. Acad. Sci. Paris, Sér. 1 330 (2000) 567-571. [Google Scholar]
  14. J.W. Clark, D.G. Lucarelli and T.J. Tarn, Control of quantum systems. Int. J. Mod. Phys. B 17 (2003) 5397-5412. [CrossRef] [Google Scholar]
  15. C. Fabre, Résultats de contrôlabilité exacte interne pour l'équation de Schrödinger at leurs limites asymptotiques, Application à certaines équations de plaques vibrantes. Asymptotic Analysis 5 (1992) 343-379. [MathSciNet] [Google Scholar]
  16. H. Helson, Harmonic Analysis. Addison-Wesley, Reading (1983). [Google Scholar]
  17. M. Holthaus and S. Stenholm, Coherent control of self-trapping transition. Eur. Phys. J. B 20 (2001) 451-467. [CrossRef] [EDP Sciences] [Google Scholar]
  18. G.M Huang, Tarn T.J and J.W. Clark, On the controllability of quantum-mechanical systems. J. Math. Phys. 24 (1983) 2608-2618. [CrossRef] [MathSciNet] [Google Scholar]
  19. H. Husimi, Miscellanea in elementary quantum mechanics II. Prog. Theor. Phys. 9 (1953) 381-402. [CrossRef] [Google Scholar]
  20. R. Illner, H. Lange and H. Teismann, A note on the exact internal control of nonlinear Schrödinger equations. CRM Proc. Lecture Notes 33 (2003) 127-137. [Google Scholar]
  21. A.E. Ingham, Some trigonometric inequalities with applications to the theory of series. Math. Z. 41 (1936) 367. [Google Scholar]
  22. J.L. Journé, A. Soffer and C.D. Sogge, Decay estimates for Schrödinger operators. Commun. Pure Appl. Math. 44 (1991) 573-604. [CrossRef] [Google Scholar]
  23. K.H. Kerner, Note on the forced and damped oscillator in quantum mechanics. Can. J. Phys. 36 (1958) 371-377. [Google Scholar]
  24. C. Lan, T.J. Tarn, Q.-S. Chi and J.W. Clark, Analytic controllability of time-dependent quantum control systems. J. Math. Phys. 46 (2005) 052102 [CrossRef] [MathSciNet] [Google Scholar]
  25. I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet controls. Differ. Int. Equ. 5 (1992) 571-535. [Google Scholar]
  26. I. Lasiecka and R. Triggiani, Control theory for partial differential equations, continuous and approximation theories. I & II. Cambridge University Press, Cambridge (2000). [Google Scholar]
  27. I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. I. Formula -estimates. J. Inverse Ill-Posed Probl. 12 (2004) 43-123. [MathSciNet] [Google Scholar]
  28. I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. II. Formula -estimates. J. Inverse Ill-Posed Probl. 12 (2004) 183-231. [Google Scholar]
  29. G. Lebeau, Contrôle de l'équation de Schrödinger. Jour. Math. Pures Appl. 71 (1992) 267-291. [Google Scholar]
  30. C. LeBris, Control theory applied to quantum chemistry, some tracks, in Conf. Int. contrôle des systèmes gouvernés par des équations aux derivées partielles. ESAIM Proc. 8 (2000) 77-94. [Google Scholar]
  31. C. LeBris, Computational Chemistry, in Handbook of Numerical Analysis, C. LeBris, Ph.G. Ciarlet Eds. North-Holland, Amsterdam (2003). [Google Scholar]
  32. J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1 & 2. Masson, Paris (1988). [Google Scholar]
  33. E. Machtyngier, Exact controllability for the Schrödinger equation. SIAM J. Contr. Opt. 32 (1994) 24-34. [Google Scholar]
  34. E. Machtyngier and E. Zuazua, Stabilization of the Schrödinger equation. Portugaliae Mat. 51 (1994) 243-256. [Google Scholar]
  35. M. Mirrahimi and P. Rouchon, Controllability of quantum harmonic oscillators. IEEE Trans. Automatic Control 49 (2004) 745-747. [Google Scholar]
  36. K.-D. Phung, Observability and control of Schrödinger equations. SIAM J. Contr. Opt. 40 (2001) 211-230. [Google Scholar]
  37. S.A. Rice and M. Zhao, Optical Control of Molecular Dynamics. John Wiley & Sons, New York (2000). [Google Scholar]
  38. D.L. Russell, Controllability and stabilizability theory for linear partial differential equations, recent progress and open questions. SIAM Rev. (1978) 20 639-739. [Google Scholar]
  39. S.G. Schirmer, J.V. Leahy and A.I. Solomon, Degrees of controllability for quantum systems and application to atomic systems. J. Phys. A 35 (2002) 4125-4141. [CrossRef] [MathSciNet] [Google Scholar]
  40. A.P. Shustov, Coherent states and energy spectrum of the anharmonic osciallator. J. Phys. A 11 (1978) 1771-1780. [CrossRef] [Google Scholar]
  41. E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press (1974). [Google Scholar]
  42. G. Turinici, Analyse de méthodes numériques de simulation et contrôle en chimie quantique. Ph.D. Thesis, Univ. Paris VI (2000). [Google Scholar]
  43. G. Turinici, Controllable quantities for bilinear quantum systems, in Proc. of the 39th IEEE Conference on Decision and Control, Sydney, Australia (2000) 1364-1369. [Google Scholar]
  44. R.M. Young, An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980). [Google Scholar]
  45. J. Zabczyk, Introduction to Control Theory. Birkhäuser, Basel (1994). [Google Scholar]
  46. E. Zuazua, Remarks on the controllability of the Schrödinger equation. CRM Proc. Lecture Notes 33 (2003) 193-211. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.