Free Access
Volume 12, Number 4, October 2006
Page(s) 615 - 635
Published online 11 October 2006
  1. F.Kh. Abdullaev and J. Garnier, Collective oscillations of one-dimensional Bose-Einstein gas under varying in time trap potential and atomic scattering length. Phys. Rev. A 70 (2004) 053604. [CrossRef]
  2. G. Bachman and N. Narici, Functional Analysis. Academic Press, N.Y. (1966).
  3. J. Ball, J. Marsden and M. Slemrod, Controllability for distributed bilinear systems. SIAM J. Contr. Opt. 20 (1982) 575-597. [CrossRef] [MathSciNet]
  4. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Contr. Opt. 30 (1992) 1024-1065. [CrossRef] [MathSciNet]
  5. L. Baudouin, A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics. Portugaliae Mat. (To appear).
  6. L. Baudouin, Existence and regularity of the solution of a time dependent Hartree-Fock equation coupled with a classical nuclear dynamics. Rev. Mat. Complut. 18 (2005) 285-314. [MathSciNet]
  7. L. Baudouin and J.-P. Puel, Bilinear optimal control problem on a Schrödinger equation with singular potentials. Preprint (2004).
  8. K. Beauchard, Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl. 84 (2005) 851-956.
  9. K. Beauchard and J.M. Coron, Controllability of a quantum particle in a moving potential well. J. Funct. Anal. 232 (2006) 328-389. [CrossRef] [MathSciNet]
  10. P.W. Brumer and M. Shapiro, Principles of the Quantum Control of Molecular Processes. Wiley-VCH, Berlin (2003).
  11. R. Carles, Linear vs. nonlinear effects for nonlinear Schrödinger equations with potential. Commun. Contemp. Math. 7(4) (2005) 483-508.
  12. E. Cancès and C. LeBris, On the time-dependent Hartree-Fock equations coupled with classical nuclear dynamics. Math. Mod. Meth. Appl. Sci. 9 (1999) 963-990. [CrossRef]
  13. E. Cancès, C. LeBris and M. Pilot, Contrôle optimale bilinéaire d'une équation de Schrödinger. C. R. Acad. Sci. Paris, Sér. 1 330 (2000) 567-571.
  14. J.W. Clark, D.G. Lucarelli and T.J. Tarn, Control of quantum systems. Int. J. Mod. Phys. B 17 (2003) 5397-5412. [CrossRef]
  15. C. Fabre, Résultats de contrôlabilité exacte interne pour l'équation de Schrödinger at leurs limites asymptotiques, Application à certaines équations de plaques vibrantes. Asymptotic Analysis 5 (1992) 343-379. [MathSciNet]
  16. H. Helson, Harmonic Analysis. Addison-Wesley, Reading (1983).
  17. M. Holthaus and S. Stenholm, Coherent control of self-trapping transition. Eur. Phys. J. B 20 (2001) 451-467. [CrossRef] [EDP Sciences]
  18. G.M Huang, Tarn T.J and J.W. Clark, On the controllability of quantum-mechanical systems. J. Math. Phys. 24 (1983) 2608-2618. [CrossRef] [MathSciNet]
  19. H. Husimi, Miscellanea in elementary quantum mechanics II. Prog. Theor. Phys. 9 (1953) 381-402. [CrossRef]
  20. R. Illner, H. Lange and H. Teismann, A note on the exact internal control of nonlinear Schrödinger equations. CRM Proc. Lecture Notes 33 (2003) 127-137.
  21. A.E. Ingham, Some trigonometric inequalities with applications to the theory of series. Math. Z. 41 (1936) 367. [CrossRef] [MathSciNet]
  22. J.L. Journé, A. Soffer and C.D. Sogge, Decay estimates for Schrödinger operators. Commun. Pure Appl. Math. 44 (1991) 573-604. [CrossRef]
  23. K.H. Kerner, Note on the forced and damped oscillator in quantum mechanics. Can. J. Phys. 36 (1958) 371-377.
  24. C. Lan, T.J. Tarn, Q.-S. Chi and J.W. Clark, Analytic controllability of time-dependent quantum control systems. J. Math. Phys. 46 (2005) 052102 [CrossRef] [MathSciNet]
  25. I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet controls. Differ. Int. Equ. 5 (1992) 571-535.
  26. I. Lasiecka and R. Triggiani, Control theory for partial differential equations, continuous and approximation theories. I & II. Cambridge University Press, Cambridge (2000).
  27. I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. I. Formula -estimates. J. Inverse Ill-Posed Probl. 12 (2004) 43-123. [MathSciNet]
  28. I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. II. Formula -estimates. J. Inverse Ill-Posed Probl. 12 (2004) 183-231. [MathSciNet]
  29. G. Lebeau, Contrôle de l'équation de Schrödinger. Jour. Math. Pures Appl. 71 (1992) 267-291.
  30. C. LeBris, Control theory applied to quantum chemistry, some tracks, in Conf. Int. contrôle des systèmes gouvernés par des équations aux derivées partielles. ESAIM Proc. 8 (2000) 77-94.
  31. C. LeBris, Computational Chemistry, in Handbook of Numerical Analysis, C. LeBris, Ph.G. Ciarlet Eds. North-Holland, Amsterdam (2003).
  32. J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1 & 2. Masson, Paris (1988).
  33. E. Machtyngier, Exact controllability for the Schrödinger equation. SIAM J. Contr. Opt. 32 (1994) 24-34.
  34. E. Machtyngier and E. Zuazua, Stabilization of the Schrödinger equation. Portugaliae Mat. 51 (1994) 243-256.
  35. M. Mirrahimi and P. Rouchon, Controllability of quantum harmonic oscillators. IEEE Trans. Automatic Control 49 (2004) 745-747. [CrossRef] [MathSciNet]
  36. K.-D. Phung, Observability and control of Schrödinger equations. SIAM J. Contr. Opt. 40 (2001) 211-230. [CrossRef] [MathSciNet]
  37. S.A. Rice and M. Zhao, Optical Control of Molecular Dynamics. John Wiley & Sons, New York (2000).
  38. D.L. Russell, Controllability and stabilizability theory for linear partial differential equations, recent progress and open questions. SIAM Rev. (1978) 20 639-739.
  39. S.G. Schirmer, J.V. Leahy and A.I. Solomon, Degrees of controllability for quantum systems and application to atomic systems. J. Phys. A 35 (2002) 4125-4141. [CrossRef] [MathSciNet]
  40. A.P. Shustov, Coherent states and energy spectrum of the anharmonic osciallator. J. Phys. A 11 (1978) 1771-1780. [CrossRef]
  41. E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press (1974).
  42. G. Turinici, Analyse de méthodes numériques de simulation et contrôle en chimie quantique. Ph.D. Thesis, Univ. Paris VI (2000).
  43. G. Turinici, Controllable quantities for bilinear quantum systems, in Proc. of the 39th IEEE Conference on Decision and Control, Sydney, Australia (2000) 1364-1369.
  44. R.M. Young, An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980).
  45. J. Zabczyk, Introduction to Control Theory. Birkhäuser, Basel (1994).
  46. E. Zuazua, Remarks on the controllability of the Schrödinger equation. CRM Proc. Lecture Notes 33 (2003) 193-211.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.